期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Long-term thinning decreases the contribution of heterotrophic respiration to soil respiration in subalpine plantations
1
作者 Longfei Chen Zhibin He +7 位作者 Wenzhi Zhao Xi Zhu Qin Shen Mingdan Song Zhengpeng Li junqia kong Shuping Yang Yuan Gao 《Journal of Forestry Research》 SCIE EI CAS CSCD 2024年第3期189-204,共16页
Interest in the dynamics of soil respiration(R_(S))in subalpine forest ecosystems is increasing due to their high soil carbon density and potential sensitivity to environmental changes.However,as a principal silvicult... Interest in the dynamics of soil respiration(R_(S))in subalpine forest ecosystems is increasing due to their high soil carbon density and potential sensitivity to environmental changes.However,as a principal silvicultural practice,the long-term impacts of thinning on R_(S) and its heterotrophic and autotrophic respiration components(R_(h) and Ra,respectively)in subalpine plantations are poorly understood,espe-cially in winter.A 3-year field observation was carried out with consideration of winter CO_(2) efflux in middle-aged sub-alpine spruce plantations in northwestern China.A trench-ing method was used to explore the long-term impacts of thinning on Rs,Rn and R_(a).Seventeen years after thinning,mean annual Rs,Rn and R_(a) increased,while the contribu-tion of R_(h) to R_(s) decreased with thinning intensity.Thinning significantly decreased winter R,because of the reduction in R_(n) but had no significant effect on Ra.The temperature sensitivity(Q_(10))of R_(h) and R_(a) also increased with thinning intensity,with lower Q_(10) values for R_(h)(2.1-2.6)than for Ra(2.4-2.8).The results revealed the explanatory variables and pathways related to R_(n) and R_(a) dynamics.Thinning increased soil moisture and nitrate nitrogen(NO_(3)^(-)-N),and the enhanced nitrogen and water availability promoted R_(h) and R_(a) by improving fine root biomass and microbial activity.Our results highlight the positive roles of NO_(3)^(-)-N in stimulating R_(s) components following long-term thinning.Therefore,applications of nitrogen fertilizer are not recommended while thinning subalpine spruce plantations from the perspective of reducing soil CO_(2) emissions.The increased Q_(10) values of R_(s) components indicate that a large increase in soil CO_(2) emissions would be expected following thinning because of more pronounced climate warming in alpineregions. 展开更多
关键词 Heterotrophic respiration Autotrophic respiration Long-term thinning impacts Cold seasons Subalpine plantations Temperature sensitivity
下载PDF
The establishment and development of Haloxylon ammodendron promotes salt accumulation in surface soil of arid sandy land 被引量:2
2
作者 YongZhong Su TingNa Liu junqia kong 《Research in Cold and Arid Regions》 CSCD 2019年第2期116-125,共10页
Haloxylon ammodendron, a representative C_4 succulent xerophyte and salt-secreting plant, is widely used in vegetation reestablishment programs to stabilize shifting sand, and is one of the dominant shrubs in the shel... Haloxylon ammodendron, a representative C_4 succulent xerophyte and salt-secreting plant, is widely used in vegetation reestablishment programs to stabilize shifting sand, and is one of the dominant shrubs in the shelter belt used to control desertification in the desert-oasis ecotone in northwestern China. In this study, we collected soil samples in an age sequence of 0-, 2-, 5-, 13-, 16-, 31-, and 39-year-old H. ammodendron plantations to assess the effects of the shrub on soil fertility and salinity. Results show that SOC and total N concentrations increased significantly with increasing plantation age and increased 5.95-(in the interspaces) to 9.05-fold(under the canopy) and 6.15-to 8.46-fold at the 0-5 cm depth at the 39-year-old plantation compared with non-vegetated sandy land. Simultaneously, H. ammodendron establishment and development resulted in significant salt accumulation in the surface layer. On average, total soil salt content at the 0-5 cm and 5-20 cm depth increased 16.8-fold and 4.4-fold, respectively, compared with non-vegetated sandy land. The increase of total salt derived mostly from the accumulation of SO_4^(2-), Ca^(2+) and Na^+ with H. ammodendron development. The accumulation in salinity was more significant than the increase in fertility, suggesting that improved soil fertility did not limit the impact of salinization. The adverse effect of salt accumulation may result in H. ammodendron plantation degradation and impact community stability in the long run. 展开更多
关键词 HALOXYLON ammodendron SOIL salt and its component SOIL organic carbon plantation CHRONOSEQUENCE SANDY land in desert-oasis ECOTONE
下载PDF
Altitude pattern of carbon stocks in desert grasslands of an arid land region 被引量:2
3
作者 Rong Yang junqia kong +1 位作者 ZeYu Du YongZhong Su 《Research in Cold and Arid Regions》 CSCD 2018年第5期404-412,共9页
For estimating the altitude-distribution pattern of carbon stocks in desert grasslands and analyzing the possible mechanism for this distribution, a detailed study was performed through a series of field vegetation su... For estimating the altitude-distribution pattern of carbon stocks in desert grasslands and analyzing the possible mechanism for this distribution, a detailed study was performed through a series of field vegetation surveys and soil samplings from 90 vegetation plots and 45 soil profiles at 9 sites of the Hexi Corridor region, Northwestern China. Aboveground, belowground, and litter-fall biomass-carbon stocks ranged from 43 to 109, 23 to 64, and 5 to 20 g/m2, with mean values of 80.82,44.91, and 12.15 g/m2, respectively. Soil-carbon stocks varied between 2.88 and 3.98 kg/m2, with a mean value of 3.43 kg/m2 in the 0–100-cm soil layer. Both biomass-and soil-carbon stocks had an increasing tendency corresponding to the altitudinal gradient. A significantly negative correlation was found between soil-carbon stock and mean annual temperature, with further better correlations between soil-and biomass-carbon stocks, and mean annual precipitation. Furthermore, soil carbon was found to be positively correlated with soil-silt and-clay content, and negatively correlated with soil bulk density and the volume percent of gravel. It can be concluded that variations in soil texture and climate condition were the key factors influencing the altitudinal pattern of carbon stocks in this desert-grassland ecosystem. Thus, by using the linear-regression functions between altitude and carbon stocks, approximately 4.18 Tg carbon were predicted from the 1,260 km2 of desert grasslands in the study area. 展开更多
关键词 altitudinal gradient soil organic carbon biomass carbon soil bulk density desert grasslands
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部