In pulsar timing, timing residuals are the differences between the observed times of arrival and predictions from the timing model. A comprehensive timing model will produce featureless resid- uals, which are presumab...In pulsar timing, timing residuals are the differences between the observed times of arrival and predictions from the timing model. A comprehensive timing model will produce featureless resid- uals, which are presumably composed of dominating noise and weak physical effects excluded from the timing model (e.g. gravitational waves). In order to apply optimal statistical methods for detecting weak gravitational wave signals, we need to know the statistical properties of noise components in the residuals. In this paper we utilize a variety of non-parametric statistical tests to analyze the whiteness and Gaussianity of the North American Nanohertz Observatory for Gravitational Waves (NANOGrav) 5- year timing data, which are obtained from Arecibo Observatory and Green Bank Telescope from 2005 to 2010. We find that most of the data are consistent with white noise; many data deviate from Gaussianity at different levels, nevertheless, removing outliers in some pulsars will mitigate the deviations.展开更多
基金supported by the National Science Foundation(NSF)under PIRE grant0968296support by the National Natural Science Foundation of China(Grant Nos.11503007,91636111 and 11690021)+2 种基金partial support through the New York Space Grant Consortiumsupport by NASA through the Einstein Fellowship grant PF4-150120upport from the JPL RTD program
文摘In pulsar timing, timing residuals are the differences between the observed times of arrival and predictions from the timing model. A comprehensive timing model will produce featureless resid- uals, which are presumably composed of dominating noise and weak physical effects excluded from the timing model (e.g. gravitational waves). In order to apply optimal statistical methods for detecting weak gravitational wave signals, we need to know the statistical properties of noise components in the residuals. In this paper we utilize a variety of non-parametric statistical tests to analyze the whiteness and Gaussianity of the North American Nanohertz Observatory for Gravitational Waves (NANOGrav) 5- year timing data, which are obtained from Arecibo Observatory and Green Bank Telescope from 2005 to 2010. We find that most of the data are consistent with white noise; many data deviate from Gaussianity at different levels, nevertheless, removing outliers in some pulsars will mitigate the deviations.