Protein-based therapeutics (PPTs) are drugs used to treat a variety of different conditions in the human body by alleviating enzymatic deficiencies, augmenting other proteins and drugs, modulating signal pathways, and...Protein-based therapeutics (PPTs) are drugs used to treat a variety of different conditions in the human body by alleviating enzymatic deficiencies, augmenting other proteins and drugs, modulating signal pathways, and more. However, many PPTs struggle from a short half-life due to degradation caused by irreversible protein aggregation in the bloodstream. Currently, the most researched strategies for improving the efficiency and longevity of PPTs are post-translational modifications (PTMs). The goal of our research was to determine which type of PTM increases longevity the most for each of three commonly-used therapeutic proteins by comparing the docking scores (DS) and binding free energies (BFE) from protein aggregation and reception simulations. DS and BFE values were used to create a quantitative index that outputs a relative number from −1 to 1 to show reduced performance, no change, or increased performance. Results showed that methylation was the most beneficial for insulin (p < 0.1) and human growth hormone (p < 0.0001), and both phosphorylation and methylation were somewhat optimal for erythropoietin (p < 0.1 and p < 0.0001, respectively). Acetylation consistently provided the worst benefits with the most negative indices, while methylation had the most positive indices throughout. However, PTM efficacy varied between PPTs, supporting previous studies regarding how each PTM can confer different benefits based on the unique structures of recipient proteins.展开更多
Leprosy is a chronic disease caused by a low multiplying bacillus, <em>Mycobacterium leprae</em>, which primarily affects the skin and the extremities. Multidrug therapy (MDT) and Bacillus Calmette-Gué...Leprosy is a chronic disease caused by a low multiplying bacillus, <em>Mycobacterium leprae</em>, which primarily affects the skin and the extremities. Multidrug therapy (MDT) and Bacillus Calmette-Guérin (BCG) vaccinations are effective at treatment of the disease, but social misconceptions about the disease inhibit efficient health care for affected individuals. In South Korea, leprosy patients face social, economic, and political discrimination. Korean leprosy patients are isolated into Sorokdo island and face challenges such as difficulty receiving education and limited job opportunities. Leprosy cognitively, emotionally, and socially impacts patients’ lives, and represents a serious social inequality issue. To raise awareness, dispel myths about the disease, and to end patient discrimination that destroys families, we conducted case studies based on scientific journals. The paper specifically focuses on difficulties faced by Korean leprosy patients, and subsequent initiatives by the government to aid patients. To reach the WHO’s target of health and wellbeing for all by 2030, we need to educate the masses about leprosy and address relevant social inequality issues.展开更多
The current study has been undertaken to examine the beneficial effect in the power output of a microbial fuel cell (MFC) by adding cellulolytic bacteria Ruminococcus albus (R. albus) into the anodic chamber. Mediator...The current study has been undertaken to examine the beneficial effect in the power output of a microbial fuel cell (MFC) by adding cellulolytic bacteria Ruminococcus albus (R. albus) into the anodic chamber. Mediator-less H-type MFCs were set up where the anode chamber contained anaerobic digester microorganisms as inocula on finely ground pine tree (Avicel) at 2% (w/v) and the cathode chamber of 10mM phosphate buffered saline conductive solution, both separated by a cation exchange membrane. The functioning of the MFCs for generation of electrical power and the amounts of gaseous byproducts was monitored over a 9-day period. The addition of cellulolytic bacteria caused an increase of average power density from 7.9 m W/m2 to19.5 m W/m2, about 245% increase over a 9-day period. For both groups of MFCs;with R. albus and the control, the head space gases collected were methane and CO2. While the methane: CO2 ratios were found unchanged at 1.7:1 throughout the 9 days of operation, the total gas production increased from 248 mL to 319 mL due to the presence of R. albus addition. This study confirms that whereas the biocatalytic activity of anode microbial population determines the energy production, the addition of external cellulolytic bacteria into anode microbial population can improve and extend the biomass utilization.展开更多
文摘Protein-based therapeutics (PPTs) are drugs used to treat a variety of different conditions in the human body by alleviating enzymatic deficiencies, augmenting other proteins and drugs, modulating signal pathways, and more. However, many PPTs struggle from a short half-life due to degradation caused by irreversible protein aggregation in the bloodstream. Currently, the most researched strategies for improving the efficiency and longevity of PPTs are post-translational modifications (PTMs). The goal of our research was to determine which type of PTM increases longevity the most for each of three commonly-used therapeutic proteins by comparing the docking scores (DS) and binding free energies (BFE) from protein aggregation and reception simulations. DS and BFE values were used to create a quantitative index that outputs a relative number from −1 to 1 to show reduced performance, no change, or increased performance. Results showed that methylation was the most beneficial for insulin (p < 0.1) and human growth hormone (p < 0.0001), and both phosphorylation and methylation were somewhat optimal for erythropoietin (p < 0.1 and p < 0.0001, respectively). Acetylation consistently provided the worst benefits with the most negative indices, while methylation had the most positive indices throughout. However, PTM efficacy varied between PPTs, supporting previous studies regarding how each PTM can confer different benefits based on the unique structures of recipient proteins.
文摘Leprosy is a chronic disease caused by a low multiplying bacillus, <em>Mycobacterium leprae</em>, which primarily affects the skin and the extremities. Multidrug therapy (MDT) and Bacillus Calmette-Guérin (BCG) vaccinations are effective at treatment of the disease, but social misconceptions about the disease inhibit efficient health care for affected individuals. In South Korea, leprosy patients face social, economic, and political discrimination. Korean leprosy patients are isolated into Sorokdo island and face challenges such as difficulty receiving education and limited job opportunities. Leprosy cognitively, emotionally, and socially impacts patients’ lives, and represents a serious social inequality issue. To raise awareness, dispel myths about the disease, and to end patient discrimination that destroys families, we conducted case studies based on scientific journals. The paper specifically focuses on difficulties faced by Korean leprosy patients, and subsequent initiatives by the government to aid patients. To reach the WHO’s target of health and wellbeing for all by 2030, we need to educate the masses about leprosy and address relevant social inequality issues.
文摘The current study has been undertaken to examine the beneficial effect in the power output of a microbial fuel cell (MFC) by adding cellulolytic bacteria Ruminococcus albus (R. albus) into the anodic chamber. Mediator-less H-type MFCs were set up where the anode chamber contained anaerobic digester microorganisms as inocula on finely ground pine tree (Avicel) at 2% (w/v) and the cathode chamber of 10mM phosphate buffered saline conductive solution, both separated by a cation exchange membrane. The functioning of the MFCs for generation of electrical power and the amounts of gaseous byproducts was monitored over a 9-day period. The addition of cellulolytic bacteria caused an increase of average power density from 7.9 m W/m2 to19.5 m W/m2, about 245% increase over a 9-day period. For both groups of MFCs;with R. albus and the control, the head space gases collected were methane and CO2. While the methane: CO2 ratios were found unchanged at 1.7:1 throughout the 9 days of operation, the total gas production increased from 248 mL to 319 mL due to the presence of R. albus addition. This study confirms that whereas the biocatalytic activity of anode microbial population determines the energy production, the addition of external cellulolytic bacteria into anode microbial population can improve and extend the biomass utilization.