Precipitable Water Vapor(PWV)constitutes a pivotal parameter within the domains of atmospheric science,and remote sensing due to its profound influence on Earth’s climate dynamics and weather patterns.It exerts a sig...Precipitable Water Vapor(PWV)constitutes a pivotal parameter within the domains of atmospheric science,and remote sensing due to its profound influence on Earth’s climate dynamics and weather patterns.It exerts a significant impact on atmospheric stability absorption and emission of radiation,thus engendering alterations in the Earth’s radiative equilibrium.As such,precise quantification of PWV holds the potential to enhance weather prognostication and fortify preparedness against severe meteorological phenomena.This study aimed to elucidate the spatial and temporal changes in seasonal and annual PWV across the Indus River Basin and its sub-basins using ERA5 reanalysis datasets.The present study used ERA5 PWV(entire atmospheric column),air temperature at 2 m(t2m)and 500 hPa(T_500hPa),evapotranspiration,and total cloud cover data from 1960 to 2021.Theil Sen slope estimator and Mann-Kendall test were used for trend analysis.Correlation and multiple regression methods were used to understand the association of PWV with other factors.The findings have unveiled the highest increase in mean PWV during the monsoon(0.40 mm/decade),followed by premonsoon(0.37 mm/decade),post-monsoon(0.27 mm/decade),and winter(0.19 mm/decade)throughout the study period.Additionally,the mean PWV exhibited the most pronounced positive trend in the sub-basin Lower Indus(LI),followed by Panjnad(P),Kabul(K),and Upper Indus(UI)across all seasons,except winter.Annual PWV has also risen in the Indus basin and its sub-basins over the last six decades.PWV exhibits a consistent upward trend up to an elevation of 3500 m within the basin which is most pronounced during the monsoon season,followed by the pre-monsoon.The escalating PWV within the basin is reasonably ascribed to increasing air temperatures,augmented evapotranspiration,and heightened cloud cover.These findings hold potential utility for pertinent authorities engaged in water resource management and planning.展开更多
Global dimming term was introduced in 1990s which means the decline in global radiation. This decline was reported in several studies across the world. In the present study time series analysis of global radiation (19...Global dimming term was introduced in 1990s which means the decline in global radiation. This decline was reported in several studies across the world. In the present study time series analysis of global radiation (1960-2003), transmissivity (1960-2003) and bright sunshine hours (1973-2003) has been done over Nagpur during pre-monsoon (March to May) and monsoon seasons (June-September). A significant decrease in global radiation and transmissivity has been reported for both the seasons and it was higher during pre-monsoon compared to monsoon. Bright sunshine hour has also shown good agreement with the previous trend with a significant trend on pre-monsoon months only. Mann Kendall test was performed to confirm the significance of reported trend.展开更多
Incense smoke(IS)is source of indoor air pollution and key risk for diverse human diseases.Less in-formation is available regarding controlled IS rodent inhalation exposure system and IS particulate matter(PM)depositi...Incense smoke(IS)is source of indoor air pollution and key risk for diverse human diseases.Less in-formation is available regarding controlled IS rodent inhalation exposure system and IS particulate matter(PM)deposition in human airways.Study aimed to demonstrate stable ISPM physicochemical parameters of 10 incense products inside the customized whole body inhalation exposure chamber(without animal)connected to smoke generation unit via aerosol mixing device.IS analyzed for size segregated PM emission,ISPM in vitro aerodynamics(MMAD and GSD determination),fine and ultrafine particle's SEM,SEM-EDX and PAH analysis.Using real life exposure scenario by utilizing MMAD,GSD and PM concentration after Tier 1 exposure assessment as key input parameters,ISPM dosimetry in infant(3 months)and adult(21 years male and female)human airways was calculated using multiple-path particle dosimetry(MPPD 3.04)modeling.Mass median aerodynamic diameter(MMAD)and geo-metric standard deviation(GSD)ranged between 0.55 and 2.10μm and 1.22 to 1.77(polydisperse)respectively.PM1.0 and PM0.1 showed multiple morphology and presence of heavy and trace elements.PAH like acenaphthylene,anthracene,fluorene,naphthalene and phenanthrene were detected(0.84-143.17μg/g).MPPD results showed higher ISPM deposition in pulmonary region and lowest in trachea bronchial region.ISPM deposition in tissue was higher in lower,peripheral lung as compared to upper and central lung tissue.Whole body inhalation exposure system showed stable IS atmosphere(physi-cochemical parameters)indicating the device suitability in future inhalation studies.MPPD ISPM deposition fraction and clearance data showed deep lung penetrating and retention behavior with higher risk in infant followed by female and then male.These modeled particle deposition and clearance data may be useful in risk assessment analysis of IS.展开更多
基金the Banaras Hindu University,Varanasi,Uttar Pradesh(India),for providing a seed grant(Letter No.R/Dev/D/IoE/Equipment/Seed Grant-II/2022-23/52078)under the Institute of Eminence(IoE)Jyotsna Singh(Ref.No.210510120701),Subhash Singh(Ref.No.220510022095),and Purushottam Tiwari(Ref.No.210510406257)are grateful to the University Grants Commission(UGC)of the Ministry of Education,Government of India(New Delhi)for providing financial support to the present study+2 种基金the Copernicus Climate Change Service(C3S)team at the European Centre for Medium-Range Weather Forecasts(ECMWF)for providing ERA5 reanalysis data in the public domainreceived a seed grant from the Banaras Hindu University,Varanasi,Uttar Pradesh(India)(Letter No.R/Dev/D/IoE/Equipment/Seed Grant-II/2022-23/52078)under the Institute of Eminence(IoE)Jyotsna Singh(Ref.No.210510120701),Subhash Singh(Ref.No.220510022095),and Purushottam Tiwari(Ref.No.210510406257)received a fellowship from the University Grants Commission(UGC)of the Ministry of Education,Government of India(New Delhi)。
文摘Precipitable Water Vapor(PWV)constitutes a pivotal parameter within the domains of atmospheric science,and remote sensing due to its profound influence on Earth’s climate dynamics and weather patterns.It exerts a significant impact on atmospheric stability absorption and emission of radiation,thus engendering alterations in the Earth’s radiative equilibrium.As such,precise quantification of PWV holds the potential to enhance weather prognostication and fortify preparedness against severe meteorological phenomena.This study aimed to elucidate the spatial and temporal changes in seasonal and annual PWV across the Indus River Basin and its sub-basins using ERA5 reanalysis datasets.The present study used ERA5 PWV(entire atmospheric column),air temperature at 2 m(t2m)and 500 hPa(T_500hPa),evapotranspiration,and total cloud cover data from 1960 to 2021.Theil Sen slope estimator and Mann-Kendall test were used for trend analysis.Correlation and multiple regression methods were used to understand the association of PWV with other factors.The findings have unveiled the highest increase in mean PWV during the monsoon(0.40 mm/decade),followed by premonsoon(0.37 mm/decade),post-monsoon(0.27 mm/decade),and winter(0.19 mm/decade)throughout the study period.Additionally,the mean PWV exhibited the most pronounced positive trend in the sub-basin Lower Indus(LI),followed by Panjnad(P),Kabul(K),and Upper Indus(UI)across all seasons,except winter.Annual PWV has also risen in the Indus basin and its sub-basins over the last six decades.PWV exhibits a consistent upward trend up to an elevation of 3500 m within the basin which is most pronounced during the monsoon season,followed by the pre-monsoon.The escalating PWV within the basin is reasonably ascribed to increasing air temperatures,augmented evapotranspiration,and heightened cloud cover.These findings hold potential utility for pertinent authorities engaged in water resource management and planning.
文摘Global dimming term was introduced in 1990s which means the decline in global radiation. This decline was reported in several studies across the world. In the present study time series analysis of global radiation (1960-2003), transmissivity (1960-2003) and bright sunshine hours (1973-2003) has been done over Nagpur during pre-monsoon (March to May) and monsoon seasons (June-September). A significant decrease in global radiation and transmissivity has been reported for both the seasons and it was higher during pre-monsoon compared to monsoon. Bright sunshine hour has also shown good agreement with the previous trend with a significant trend on pre-monsoon months only. Mann Kendall test was performed to confirm the significance of reported trend.
文摘Incense smoke(IS)is source of indoor air pollution and key risk for diverse human diseases.Less in-formation is available regarding controlled IS rodent inhalation exposure system and IS particulate matter(PM)deposition in human airways.Study aimed to demonstrate stable ISPM physicochemical parameters of 10 incense products inside the customized whole body inhalation exposure chamber(without animal)connected to smoke generation unit via aerosol mixing device.IS analyzed for size segregated PM emission,ISPM in vitro aerodynamics(MMAD and GSD determination),fine and ultrafine particle's SEM,SEM-EDX and PAH analysis.Using real life exposure scenario by utilizing MMAD,GSD and PM concentration after Tier 1 exposure assessment as key input parameters,ISPM dosimetry in infant(3 months)and adult(21 years male and female)human airways was calculated using multiple-path particle dosimetry(MPPD 3.04)modeling.Mass median aerodynamic diameter(MMAD)and geo-metric standard deviation(GSD)ranged between 0.55 and 2.10μm and 1.22 to 1.77(polydisperse)respectively.PM1.0 and PM0.1 showed multiple morphology and presence of heavy and trace elements.PAH like acenaphthylene,anthracene,fluorene,naphthalene and phenanthrene were detected(0.84-143.17μg/g).MPPD results showed higher ISPM deposition in pulmonary region and lowest in trachea bronchial region.ISPM deposition in tissue was higher in lower,peripheral lung as compared to upper and central lung tissue.Whole body inhalation exposure system showed stable IS atmosphere(physi-cochemical parameters)indicating the device suitability in future inhalation studies.MPPD ISPM deposition fraction and clearance data showed deep lung penetrating and retention behavior with higher risk in infant followed by female and then male.These modeled particle deposition and clearance data may be useful in risk assessment analysis of IS.