BACKGROUND Treatment options for patients with gastric cancer(GC)continue to improve,but the overall prognosis is poor.The use of PD-1 inhibitors has also brought benefits to patients with advanced GC and has graduall...BACKGROUND Treatment options for patients with gastric cancer(GC)continue to improve,but the overall prognosis is poor.The use of PD-1 inhibitors has also brought benefits to patients with advanced GC and has gradually become the new standard treatment option at present,and there is an urgent need to identify valuable biomarkers to classify patients with different characteristics into subgroups.AIM To determined the effects of differentially expressed immune-related genes(DEIRGs)on the development,prognosis,tumor microenvironment(TME),and treatment response among GC patients with the expectation of providing new biomarkers for personalized treatment of GC populations.METHODS Gene expression data and clinical pathologic information were downloaded from The Cancer Genome Atlas(TCGA),and immune-related genes(IRGs)were searched from ImmPort.DEIRGs were extracted from the intersection of the differentially-expressed genes(DEGs)and IRGs lists.The enrichment pathways of key genes were obtained by analyzing the Kyoto Encyclopedia of Genes and Genomes(KEGGs)and Gene Ontology(GO)databases.To identify genes associated with prognosis,a tumor risk score model based on DEIRGs was constructed using Least Absolute Shrinkage and Selection Operator and multivariate Cox regression.The tumor risk score was divided into high-and lowrisk groups.The entire cohort was randomly divided into a 2:1 training cohort and a test cohort for internal validation to assess the feasibility of the risk model.The infiltration of immune cells was obtained using‘CIBERSORT,’and the infiltration of immune subgroups in high-and low-risk groups was analyzed.The GC immune score data were obtained and the difference in immune scores between the two groups was analyzed.RESULTS We collected 412 GC and 36 adjacent tissue samples,and identified 3627 DEGs and 1311 IRGs.A total of 482 DEIRGs were obtained.GO analysis showed that DEIRGs were mainly distributed in immunoglobulin complexes,receptor ligand activity,and signaling receptor activators.KEGG pathway analysis showed that the top three DEIRGs enrichment types were cytokine-cytokine receptors,neuroactive ligand receptor interactions,and viral protein interactions.We ultimately obtained an immune-related signature based on 10 genes,including 9 risk genes(LCN1,LEAP2,TMSB15A mRNA,DEFB126,PI15,IGHD3-16,IGLV3-22,CGB5,and GLP2R)and 1 protective gene(LGR6).Kaplan-Meier survival analysis,receiver operating characteristic curve analysis,and risk curves confirmed that the risk model had good predictive ability.Multivariate COX analysis showed that age,stage,and risk score were independent prognostic factors for patients with GC.Meanwhile,patients in the low-risk group had higher tumor mutation burden and immunophenotype,which can be used to predict the immune checkpoint inhibitor response.Both cytotoxic T lymphocyte antigen4+and programmed death 1+patients with lower risk scores were more sensitive to immunotherapy.CONCLUSION In this study a new prognostic model consisting of 10 DEIRGs was constructed based on the TME.By providing risk factor analysis and prognostic information,our risk model can provide new directions for immunotherapy in GC patients.展开更多
BACKGROUND Although treatment options for gastric cancer(GC)continue to advance,the overall prognosis for patients with GC remains poor.At present,the predictors of treatment efficacy remain controversial except for h...BACKGROUND Although treatment options for gastric cancer(GC)continue to advance,the overall prognosis for patients with GC remains poor.At present,the predictors of treatment efficacy remain controversial except for high microsatellite instability.AIM To develop methods to identify groups of patients with GC who would benefit the most from receiving the combination of a programmed cell death protein 1(PD-1)inhibitor and chemotherapy.METHODS We acquired data from 63 patients with human epidermal growth factor receptor 2(HER2)-negative GC with a histological diagnosis of GC at the Cancer Hospital,Chinese Academy of Medical Sciences between November 2020 and October 2022.All of the patients screened received a PD-1 inhibitor combined with chemotherapy as the first-line treatment.RESULTS As of July 1,2023,the objective response rate was 61.9%,and the disease control rate was 96.8%.The median progression-free survival(mPFS)for all patients was 6.3 months.The median overall survival was not achieved.Survival analysis showed that patients with a combined positive score(CPS)≥1 exhibited an extended trend in progression-free survival(PFS)when compared to patients with a CPS of 0 after receiving a PD-1 inhibitor combined with oxaliplatin and tegafur as the first-line treatment.PFS exhibited a trend for prolongation as the expression level of HER2 increased.Based on PFS,we divided patients into two groups:A treatment group with excellent efficacy and a treatment group with poor efficacy.The mPFS of the excellent efficacy group was 8 months,with a mPFS of 9.1 months after excluding a cohort of patients who received interrupted therapy due to surgery.The mPFS was 4.5 months in patients in the group with poor efficacy who did not receive surgery.Using good/poor efficacy as the endpoint of our study,univariate analysis revealed that both CPS score(P=0.004)and HER2 expression level(P=0.015)were both factors that exerted significant influence on the efficacy of treatment the combination of a PD-1 inhibitor and chemotherapy in patients with advanced GC(AGC).Finally,multivariate analysis confirmed that CPS score was a significant influencing factor.CONCLUSION CPS score and HER2 expression both impacted the efficacy of immunotherapy combined with chemotherapy in AGC patients who were non-positive for HER2.展开更多
The state of health(SOH)and remaining useful life(RUL)of lithium-ion batteries are crucial for health management and diagnosis.However,most data-driven estimation methods heavily rely on scarce labeled data,while trad...The state of health(SOH)and remaining useful life(RUL)of lithium-ion batteries are crucial for health management and diagnosis.However,most data-driven estimation methods heavily rely on scarce labeled data,while traditional transfer learning faces challenges in handling domain shifts across various battery types.This paper proposes an enhanced vision-transformer integrating with semi-supervised transfer learning for SOH and RUL estimation of lithium-ion batteries.A depth-wise separable convolutional vision-transformer is developed to extract local aging details with depth-wise convolutions and establishes global dependencies between aging information using multi-head attention.Maximum mean discrepancy is employed to initially reduce the distribution difference between the source and target domains,providing a superior starting point for fine-tuning the target domain model.Subsequently,the abundant aging data of the same type as the target battery are labeled through semi-supervised learning,compensating for the source model's limitations in capturing target battery aging characteristics.Consistency regularization incorporates the cross-entropy between predictions with and without adversarial perturbations into the gradient backpropagation of the overall model.In particular,across the experimental groups 13–15 for different types of batteries,the root mean square error of SOH estimation was less than 0.66%,and the mean relative error of RUL estimation was 3.86%.Leveraging extensive unlabeled aging data,the proposed method could achieve accurate estimation of SOH and RUL.展开更多
Metasurfaces can perform high-performance multi-functional integration by manipulating the abundant physical dimensions of light,demonstrating great potential in high-capacity information technologies.The orbital angu...Metasurfaces can perform high-performance multi-functional integration by manipulating the abundant physical dimensions of light,demonstrating great potential in high-capacity information technologies.The orbital angular momentum(OAM)and spin angular momentum(SAM)dimensions have been respectively explored as the independent carrier for information multiplexing.However,fully managing these two intrinsic properties in information multiplexing remains elusive.Here,we propose the concept of angular momentum(AM)holography which can fully synergize these two fundamental dimensions to act as the information carrier,via a single-layer,non-interleaved metasurface.The underlying mechanism relies on independently controlling the two spin eigenstates and arbitrary overlaying them in each operation channel,thereby spatially modulating the resulting waveform at will.As a proof of concept,we demonstrate an AM meta-hologram allowing the reconstruction of two sets of holographic images,i.e.,the spin-orbital locked and the spin-superimposed ones.Remarkably,leveraging the designed dual-functional AM meta-hologram,we demonstrate a novel optical nested encryption scheme,which is able to achieve parallel information transmission with ultra-high capacity and security.Our work opens a new avenue for optionally manipulating the AM,holding promising applications in the fields of optical communication,information security and quantum science.展开更多
Characterizing the amplitude, phase profile, and polarization of optical beams is critical in modern optics. With a series of cascaded optical components, one can accurately resolve the optical singularity and polariz...Characterizing the amplitude, phase profile, and polarization of optical beams is critical in modern optics. With a series of cascaded optical components, one can accurately resolve the optical singularity and polarization state in traditional polarimetry systems. However, complicated optical setups and bulky configurations inevitably hinder future applications for integration. Here, we demonstrate a metadevice that fully resolves arbitrary beams on a higher-order Poincaré sphere(HOPS) via a single-layer all-silicon metasurface. The device is compact and capable of detecting optical singularities and higher-order Stokes parameters simultaneously through a single intensity measurement. To verify the validity of the proposed metadevice, different beams on HOPS0,0 and HOPS1,-1 are illuminated on the metadevices. The beams are fully resolved, and the reconstructed higher-order Stokes parameters show good agreement with the original ones. Taking the signal-to-noise ratio into account, the numerical simulations indicate that the design strategy can be extended to fully resolve arbitrary beams on HOPS with order up to 4. Because of the advantages of compact configuration and compatibility with current semiconductor technology, the metadevice will facilitate potential applications in information processing and optical communications.展开更多
基金Beijing CSCO Clinical Oncology Research Foundation,No.Y-HH202102-0308.
文摘BACKGROUND Treatment options for patients with gastric cancer(GC)continue to improve,but the overall prognosis is poor.The use of PD-1 inhibitors has also brought benefits to patients with advanced GC and has gradually become the new standard treatment option at present,and there is an urgent need to identify valuable biomarkers to classify patients with different characteristics into subgroups.AIM To determined the effects of differentially expressed immune-related genes(DEIRGs)on the development,prognosis,tumor microenvironment(TME),and treatment response among GC patients with the expectation of providing new biomarkers for personalized treatment of GC populations.METHODS Gene expression data and clinical pathologic information were downloaded from The Cancer Genome Atlas(TCGA),and immune-related genes(IRGs)were searched from ImmPort.DEIRGs were extracted from the intersection of the differentially-expressed genes(DEGs)and IRGs lists.The enrichment pathways of key genes were obtained by analyzing the Kyoto Encyclopedia of Genes and Genomes(KEGGs)and Gene Ontology(GO)databases.To identify genes associated with prognosis,a tumor risk score model based on DEIRGs was constructed using Least Absolute Shrinkage and Selection Operator and multivariate Cox regression.The tumor risk score was divided into high-and lowrisk groups.The entire cohort was randomly divided into a 2:1 training cohort and a test cohort for internal validation to assess the feasibility of the risk model.The infiltration of immune cells was obtained using‘CIBERSORT,’and the infiltration of immune subgroups in high-and low-risk groups was analyzed.The GC immune score data were obtained and the difference in immune scores between the two groups was analyzed.RESULTS We collected 412 GC and 36 adjacent tissue samples,and identified 3627 DEGs and 1311 IRGs.A total of 482 DEIRGs were obtained.GO analysis showed that DEIRGs were mainly distributed in immunoglobulin complexes,receptor ligand activity,and signaling receptor activators.KEGG pathway analysis showed that the top three DEIRGs enrichment types were cytokine-cytokine receptors,neuroactive ligand receptor interactions,and viral protein interactions.We ultimately obtained an immune-related signature based on 10 genes,including 9 risk genes(LCN1,LEAP2,TMSB15A mRNA,DEFB126,PI15,IGHD3-16,IGLV3-22,CGB5,and GLP2R)and 1 protective gene(LGR6).Kaplan-Meier survival analysis,receiver operating characteristic curve analysis,and risk curves confirmed that the risk model had good predictive ability.Multivariate COX analysis showed that age,stage,and risk score were independent prognostic factors for patients with GC.Meanwhile,patients in the low-risk group had higher tumor mutation burden and immunophenotype,which can be used to predict the immune checkpoint inhibitor response.Both cytotoxic T lymphocyte antigen4+and programmed death 1+patients with lower risk scores were more sensitive to immunotherapy.CONCLUSION In this study a new prognostic model consisting of 10 DEIRGs was constructed based on the TME.By providing risk factor analysis and prognostic information,our risk model can provide new directions for immunotherapy in GC patients.
基金Supported by Beijing CSCO Clinical Oncology Research Foundation,No.Y-HH202102-0314。
文摘BACKGROUND Although treatment options for gastric cancer(GC)continue to advance,the overall prognosis for patients with GC remains poor.At present,the predictors of treatment efficacy remain controversial except for high microsatellite instability.AIM To develop methods to identify groups of patients with GC who would benefit the most from receiving the combination of a programmed cell death protein 1(PD-1)inhibitor and chemotherapy.METHODS We acquired data from 63 patients with human epidermal growth factor receptor 2(HER2)-negative GC with a histological diagnosis of GC at the Cancer Hospital,Chinese Academy of Medical Sciences between November 2020 and October 2022.All of the patients screened received a PD-1 inhibitor combined with chemotherapy as the first-line treatment.RESULTS As of July 1,2023,the objective response rate was 61.9%,and the disease control rate was 96.8%.The median progression-free survival(mPFS)for all patients was 6.3 months.The median overall survival was not achieved.Survival analysis showed that patients with a combined positive score(CPS)≥1 exhibited an extended trend in progression-free survival(PFS)when compared to patients with a CPS of 0 after receiving a PD-1 inhibitor combined with oxaliplatin and tegafur as the first-line treatment.PFS exhibited a trend for prolongation as the expression level of HER2 increased.Based on PFS,we divided patients into two groups:A treatment group with excellent efficacy and a treatment group with poor efficacy.The mPFS of the excellent efficacy group was 8 months,with a mPFS of 9.1 months after excluding a cohort of patients who received interrupted therapy due to surgery.The mPFS was 4.5 months in patients in the group with poor efficacy who did not receive surgery.Using good/poor efficacy as the endpoint of our study,univariate analysis revealed that both CPS score(P=0.004)and HER2 expression level(P=0.015)were both factors that exerted significant influence on the efficacy of treatment the combination of a PD-1 inhibitor and chemotherapy in patients with advanced GC(AGC).Finally,multivariate analysis confirmed that CPS score was a significant influencing factor.CONCLUSION CPS score and HER2 expression both impacted the efficacy of immunotherapy combined with chemotherapy in AGC patients who were non-positive for HER2.
基金supported by the Science and Technology Major Project of Fujian Province of China(Grant No.2022HZ028018)the National Natural Science Foundation of China(Grant No.51907030).
文摘The state of health(SOH)and remaining useful life(RUL)of lithium-ion batteries are crucial for health management and diagnosis.However,most data-driven estimation methods heavily rely on scarce labeled data,while traditional transfer learning faces challenges in handling domain shifts across various battery types.This paper proposes an enhanced vision-transformer integrating with semi-supervised transfer learning for SOH and RUL estimation of lithium-ion batteries.A depth-wise separable convolutional vision-transformer is developed to extract local aging details with depth-wise convolutions and establishes global dependencies between aging information using multi-head attention.Maximum mean discrepancy is employed to initially reduce the distribution difference between the source and target domains,providing a superior starting point for fine-tuning the target domain model.Subsequently,the abundant aging data of the same type as the target battery are labeled through semi-supervised learning,compensating for the source model's limitations in capturing target battery aging characteristics.Consistency regularization incorporates the cross-entropy between predictions with and without adversarial perturbations into the gradient backpropagation of the overall model.In particular,across the experimental groups 13–15 for different types of batteries,the root mean square error of SOH estimation was less than 0.66%,and the mean relative error of RUL estimation was 3.86%.Leveraging extensive unlabeled aging data,the proposed method could achieve accurate estimation of SOH and RUL.
基金support from the National Natural Science Foundation of China(Grant No.62275078,52005175,52111530233,61935013,61975133,12204165)the National Key Research and Development Program of China(Grant No.2021YFB3600500)+3 种基金Natural Science Foundation of Hunan Province of China(Grant No.2022JJ20020)Shenzhen Science and Technology Program(Grant No.RCBS20200714114855118)the Tribology Science Fund of State Key Laboratory of Tribology(SKLTKF20B04)Natural Science Foundation of Guangdong Province(Grant No.2020A1515011185),。
文摘Metasurfaces can perform high-performance multi-functional integration by manipulating the abundant physical dimensions of light,demonstrating great potential in high-capacity information technologies.The orbital angular momentum(OAM)and spin angular momentum(SAM)dimensions have been respectively explored as the independent carrier for information multiplexing.However,fully managing these two intrinsic properties in information multiplexing remains elusive.Here,we propose the concept of angular momentum(AM)holography which can fully synergize these two fundamental dimensions to act as the information carrier,via a single-layer,non-interleaved metasurface.The underlying mechanism relies on independently controlling the two spin eigenstates and arbitrary overlaying them in each operation channel,thereby spatially modulating the resulting waveform at will.As a proof of concept,we demonstrate an AM meta-hologram allowing the reconstruction of two sets of holographic images,i.e.,the spin-orbital locked and the spin-superimposed ones.Remarkably,leveraging the designed dual-functional AM meta-hologram,we demonstrate a novel optical nested encryption scheme,which is able to achieve parallel information transmission with ultra-high capacity and security.Our work opens a new avenue for optionally manipulating the AM,holding promising applications in the fields of optical communication,information security and quantum science.
基金Guangdong Major Project of Basic and Applied Basic Research (2020B0301030009)National Key Research and Development Program of China (2018YFB1801801)+4 种基金National Natural Science Foundation of China (U1701661,61935013, 61975133, 11604218, 11774240, 11947017)Natural Science Foundation of Guangdong Province(2016A030312010, 2020A1515011185)Leadership of Guangdong Province Program (00201505)Science and Technology Innovation Commission of Shenzhen grants Shenzhen Peacock Plan (JCYJ20180507182035270,KQJSCX20170727100838364, KQTD20170330110444030,ZDSYS201703031605029, JCYJ20200109114018750,JCYJ20180305125418079)Shenzhen University (2019075)。
文摘Characterizing the amplitude, phase profile, and polarization of optical beams is critical in modern optics. With a series of cascaded optical components, one can accurately resolve the optical singularity and polarization state in traditional polarimetry systems. However, complicated optical setups and bulky configurations inevitably hinder future applications for integration. Here, we demonstrate a metadevice that fully resolves arbitrary beams on a higher-order Poincaré sphere(HOPS) via a single-layer all-silicon metasurface. The device is compact and capable of detecting optical singularities and higher-order Stokes parameters simultaneously through a single intensity measurement. To verify the validity of the proposed metadevice, different beams on HOPS0,0 and HOPS1,-1 are illuminated on the metadevices. The beams are fully resolved, and the reconstructed higher-order Stokes parameters show good agreement with the original ones. Taking the signal-to-noise ratio into account, the numerical simulations indicate that the design strategy can be extended to fully resolve arbitrary beams on HOPS with order up to 4. Because of the advantages of compact configuration and compatibility with current semiconductor technology, the metadevice will facilitate potential applications in information processing and optical communications.