期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Relation Enhanced Neural Model for Type Classification of EntityMentions with a Fine-Grained Taxonomy
1
作者 kai-yuan cui Peng-Jie Ren +2 位作者 Zhu-Min Chen Tao Lian Jun Ma 《Journal of Computer Science & Technology》 SCIE EI CSCD 2017年第4期814-827,共14页
Inferring semantic types of the entity mentions in a sentence is a necessary yet challenging task. Most of existing methods employ a very coarse-grained type taxonomy, which is too general and not exact enough for man... Inferring semantic types of the entity mentions in a sentence is a necessary yet challenging task. Most of existing methods employ a very coarse-grained type taxonomy, which is too general and not exact enough for many tasks. However, the performances of the methods drop sharply when we extend the type taxonomy to a fine-grained one with several hundreds of types. In this paper, we introduce a hybrid neural network model for type classification of entity mentions with a fine-grained taxonomy. There are four components in our model, namely, the entity mention component, the context component, the relation component, the already known type component, which are used to extract features from the target entity mention, context, relations and already known types of the entity mentions in surrounding context respectively. The learned features by the four components are concatenated and fed into a softmax layer to predict the type distribution. We carried out extensive experiments to evaluate our proposed model. Experimental results demonstrate that our model achieves state-of-the-art performance on the FIGER dataset. Moreover, we extracted larger datasets from Wikipedia and DBpedia. On the larger datasets, our model achieves the comparable performance to the state-of-the-art methods with the coarse-grained type taxonomy, but performs much better than those methods with the fine-grained type taxonomy in terms of micro-F1, macro-F1 and weighted-F1. 展开更多
关键词 entity mention classification entity mention relation fine-grained taxonomy
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部