中子辐射俘获反应在反应堆运行、核装置设计及核天体物理研究中起重要的作用.4πBaF_(2)探测装置有着高时间分辨能力、低中子灵敏度、高探测效率等优点,适合开展中子辐射俘获反应截面数据的测量.中国原子能科学研究院核数据重点实验室...中子辐射俘获反应在反应堆运行、核装置设计及核天体物理研究中起重要的作用.4πBaF_(2)探测装置有着高时间分辨能力、低中子灵敏度、高探测效率等优点,适合开展中子辐射俘获反应截面数据的测量.中国原子能科学研究院核数据重点实验室建立了伽马全吸收装置(Gamma total absorption facility,GTAF),该装置用28块六棱BaF_(2)晶体和12块五棱BaF_(2)晶体构成了外径25 cm,内径10 cm的球壳,覆盖了95.2%的立体角.利用GTAF在中国散裂中子源Back-n束线上,测量了197Au(n,γ)的反应截面数据.测量数据通过能量筛选、PSD方法、晶体多重性筛选进行了初步本底扣除,随后结合对^(nat)C及空样品的测量数据对本底进行了分析及扣除,获得了197Au俘获反应的产额,利用SAMMY程序拟合得到了^(197)Au在1—100 e V的共振能量、中子共振宽度和伽马共振宽度参数.实验测量结果与ENDF/B-VIII.0数据库符合良好,其共振参数存在一定差异,分析原因可能与GTAF能量分辨率、Back-n的中子能谱测量精度、以及实验本底扣除方法相关,这也是下一步工作的重点.展开更多
A stranded wires helical spring is formed of a multilayer and coaxial strand of several wires twisted together with the same direction of spiral. Compared with the conventional single wire spring, the stranded wires h...A stranded wires helical spring is formed of a multilayer and coaxial strand of several wires twisted together with the same direction of spiral. Compared with the conventional single wire spring, the stranded wires helical spring has the notable predominance in strength, damping and vibration reduction, which is usually used in aircraft engines, automatic weapons, etc. However, due to its complicated structure, the precise computation of its strength and rigidity need be a correct mathematical model, which then will be imported to finite element analysis software for solutions. Equations on solving geometric parameters, such as external diameters of strands and screw pitches of wires, are put forward in the paper. It also proposes a novel methodology on solving geometric parameters and establishing entity models of the stranded wires helical spring, which provides foundation of computing mechanical parameters by FEA. Then mathematical models on the centre line of the strand and the surface curve of each wire, after closing two ends in a spring, are proposed. Finally, geometric parameters are solved in a case study, and a 3D entity model of a spring with 3 layers and 16 wires is established, which has validated the accuracy of the proposed methodology and the 3D entity mathematical model. The method provides a new way to design stranded wire helical spring.展开更多
文摘中子辐射俘获反应在反应堆运行、核装置设计及核天体物理研究中起重要的作用.4πBaF_(2)探测装置有着高时间分辨能力、低中子灵敏度、高探测效率等优点,适合开展中子辐射俘获反应截面数据的测量.中国原子能科学研究院核数据重点实验室建立了伽马全吸收装置(Gamma total absorption facility,GTAF),该装置用28块六棱BaF_(2)晶体和12块五棱BaF_(2)晶体构成了外径25 cm,内径10 cm的球壳,覆盖了95.2%的立体角.利用GTAF在中国散裂中子源Back-n束线上,测量了197Au(n,γ)的反应截面数据.测量数据通过能量筛选、PSD方法、晶体多重性筛选进行了初步本底扣除,随后结合对^(nat)C及空样品的测量数据对本底进行了分析及扣除,获得了197Au俘获反应的产额,利用SAMMY程序拟合得到了^(197)Au在1—100 e V的共振能量、中子共振宽度和伽马共振宽度参数.实验测量结果与ENDF/B-VIII.0数据库符合良好,其共振参数存在一定差异,分析原因可能与GTAF能量分辨率、Back-n的中子能谱测量精度、以及实验本底扣除方法相关,这也是下一步工作的重点.
基金supported by National Natural Science Foundation for Distinguished Young Scholar of China (Grant No. 50925518)National Natural Science Foundation of China (Grant No. 50775226)+1 种基金Key Project of Ministry of Education of China(Grant No. 109129)Chongqing Municipal Key Scientific and Technological Project of China (Grant No. CSTC2009AC3049)
文摘A stranded wires helical spring is formed of a multilayer and coaxial strand of several wires twisted together with the same direction of spiral. Compared with the conventional single wire spring, the stranded wires helical spring has the notable predominance in strength, damping and vibration reduction, which is usually used in aircraft engines, automatic weapons, etc. However, due to its complicated structure, the precise computation of its strength and rigidity need be a correct mathematical model, which then will be imported to finite element analysis software for solutions. Equations on solving geometric parameters, such as external diameters of strands and screw pitches of wires, are put forward in the paper. It also proposes a novel methodology on solving geometric parameters and establishing entity models of the stranded wires helical spring, which provides foundation of computing mechanical parameters by FEA. Then mathematical models on the centre line of the strand and the surface curve of each wire, after closing two ends in a spring, are proposed. Finally, geometric parameters are solved in a case study, and a 3D entity model of a spring with 3 layers and 16 wires is established, which has validated the accuracy of the proposed methodology and the 3D entity mathematical model. The method provides a new way to design stranded wire helical spring.