Cerium oxide(CeO_(2)),or ceria,and its doped derivatives have been extensively studied for several decades and are well-known oxides valued for their unique structural properties and wide range of applications.These m...Cerium oxide(CeO_(2)),or ceria,and its doped derivatives have been extensively studied for several decades and are well-known oxides valued for their unique structural properties and wide range of applications.These materials play a crucial role in sustainable development within society.Structural modification through de fect e ngineering of the highly stable cubic fluorite phase enhances the versatility of this doped ceria to a new level.Among the numerous dopants of the CeO_(2)matrix,ceria doped with gadolinium(Gd),known as Ce_(1-x)Gd_(x)O_(2-■)(CGO),is gaining popularity due to its multifunctionality.The introduction of defect-induced vacancies in the oxygen sublattice(V_(o))and a change in the average valence of cerium(Ce^(3+)/Ce^(4+))are primarily responsible for the improved performance compared to pristine CeO_(2).These materials are currently undergoing intensive research for potential use as electrolytes in intermediate-temperature solid oxide fuel cells(IT-SOFCs)and dense oxygen-permeable membranes(OPMs).Additionally,they are being commercially utilized for power generation and oxygen separation.CGO materials are also attracting significant attention in various fields such as optics,photocatalysis,electrostriction,spintronics,gas sensing,electrocatalysis,and biomedical applications.This review paper aims to compile the latest contributions to CGO materials and comprehensively cover their various application areas.The crystal structure,defect equilibrium in Gd^(3+)-doped CeO_(2),the origin of multifunctionality,and the prospects of these materials are also exclusively discussed.展开更多
基金Project supported by the Indian Council of Medical Research(#5/3/8/30/ITR-f/2018-ITR)National Research Foundation of Korea(RS-2023-00278268)。
文摘Cerium oxide(CeO_(2)),or ceria,and its doped derivatives have been extensively studied for several decades and are well-known oxides valued for their unique structural properties and wide range of applications.These materials play a crucial role in sustainable development within society.Structural modification through de fect e ngineering of the highly stable cubic fluorite phase enhances the versatility of this doped ceria to a new level.Among the numerous dopants of the CeO_(2)matrix,ceria doped with gadolinium(Gd),known as Ce_(1-x)Gd_(x)O_(2-■)(CGO),is gaining popularity due to its multifunctionality.The introduction of defect-induced vacancies in the oxygen sublattice(V_(o))and a change in the average valence of cerium(Ce^(3+)/Ce^(4+))are primarily responsible for the improved performance compared to pristine CeO_(2).These materials are currently undergoing intensive research for potential use as electrolytes in intermediate-temperature solid oxide fuel cells(IT-SOFCs)and dense oxygen-permeable membranes(OPMs).Additionally,they are being commercially utilized for power generation and oxygen separation.CGO materials are also attracting significant attention in various fields such as optics,photocatalysis,electrostriction,spintronics,gas sensing,electrocatalysis,and biomedical applications.This review paper aims to compile the latest contributions to CGO materials and comprehensively cover their various application areas.The crystal structure,defect equilibrium in Gd^(3+)-doped CeO_(2),the origin of multifunctionality,and the prospects of these materials are also exclusively discussed.