The knowledge of water temperature produced from a geothermal reservoir and its composition is of utmost importance in designing utilization strategies, the surface production facilities and in selecting the material ...The knowledge of water temperature produced from a geothermal reservoir and its composition is of utmost importance in designing utilization strategies, the surface production facilities and in selecting the material to be used. Unai hot springs are located in the southern part of Gujarat, India with discharge temperatures varying from 51 to 56 ℃. With the aim of developing Unai as a potential geothermal field and exploiting it in the future, geochemical and geothermometrical study was undertaken. The samples were collected from various Unai geothermal location and analysis of chemical composition of water obtained from different wells was done. The concentration of Silica, carbonate and ions like Na and Cl have been analyzed to delineate the path of water movement in the subsurface and classify the reservoir based on the enthalpy.The ratio of the concentration of ions like Na^+ and K^+ and the relative proportions of various sets of ions were also used to characterize the geothermal reservoir and the reservoir fluid by the use of ternary diagrams. Na–K–Ca,Chalcedony, quartz, and Silica geo-thermometers have been studied. The present study also envisages the importance of graphical representations like Piper diagram,Scholler etc. to determine variation in hydrochemical facies and to understand the evolution of hydrochemical processes in the Unai geothermal field respectively. The study yields the conclusion that the reservoir under consideration is a low enthalpy reservoir with temperature ranging from 60 to 80 ℃.展开更多
Conventionally oil recovery factor is too low,which leaves great prospects for the application of enhanced oil recovery(EOR)methods to increase recovery factor.EOR methods are capital intensive and few are environment...Conventionally oil recovery factor is too low,which leaves great prospects for the application of enhanced oil recovery(EOR)methods to increase recovery factor.EOR methods are capital intensive and few are environmentally hazardous.So the paper discusses on the alternate enhanced oil recovery technique which has tremendous potential to curb the challenges of conventional EOR methods.Plasma pulse technology(PPT)aided EOR treatment is administered with an electric wireline conveyed plasma pulse generator tool that is run in the well and positioned alongside the perforations.Using energy stored in the generator's capacitors,a plasma arc is created that emits a tremendous amount of heat and pressure for a fraction of a second.This in turn creates a broad band of hydraulic impulse acoustic waves that are powerful enough to clean perforations and near wellbore damage.These waves continue to resonate deep into the reservoir,exciting the fluid molecules and increasing the reservoirs natural resonance to the degree that it can break larger hydrocarbon molecules to smaller one and simultaneously reducing adhesion tension which results in increased mobility of hydrocarbons.The plasma pulse technology has been successfully used on production as well as injection wells.It has been used often as a remedial procedure to increase well's productivity that has been on production for a period of time.This paper throws light on fundamentals of this advancing plasma pulse technology,contrasting it with recent EOR techniques.Effectiveness of treatment in increasing oil recovery,it's applicability to different reservoir types and results achieved so far are also covered in the paper.展开更多
文摘The knowledge of water temperature produced from a geothermal reservoir and its composition is of utmost importance in designing utilization strategies, the surface production facilities and in selecting the material to be used. Unai hot springs are located in the southern part of Gujarat, India with discharge temperatures varying from 51 to 56 ℃. With the aim of developing Unai as a potential geothermal field and exploiting it in the future, geochemical and geothermometrical study was undertaken. The samples were collected from various Unai geothermal location and analysis of chemical composition of water obtained from different wells was done. The concentration of Silica, carbonate and ions like Na and Cl have been analyzed to delineate the path of water movement in the subsurface and classify the reservoir based on the enthalpy.The ratio of the concentration of ions like Na^+ and K^+ and the relative proportions of various sets of ions were also used to characterize the geothermal reservoir and the reservoir fluid by the use of ternary diagrams. Na–K–Ca,Chalcedony, quartz, and Silica geo-thermometers have been studied. The present study also envisages the importance of graphical representations like Piper diagram,Scholler etc. to determine variation in hydrochemical facies and to understand the evolution of hydrochemical processes in the Unai geothermal field respectively. The study yields the conclusion that the reservoir under consideration is a low enthalpy reservoir with temperature ranging from 60 to 80 ℃.
文摘Conventionally oil recovery factor is too low,which leaves great prospects for the application of enhanced oil recovery(EOR)methods to increase recovery factor.EOR methods are capital intensive and few are environmentally hazardous.So the paper discusses on the alternate enhanced oil recovery technique which has tremendous potential to curb the challenges of conventional EOR methods.Plasma pulse technology(PPT)aided EOR treatment is administered with an electric wireline conveyed plasma pulse generator tool that is run in the well and positioned alongside the perforations.Using energy stored in the generator's capacitors,a plasma arc is created that emits a tremendous amount of heat and pressure for a fraction of a second.This in turn creates a broad band of hydraulic impulse acoustic waves that are powerful enough to clean perforations and near wellbore damage.These waves continue to resonate deep into the reservoir,exciting the fluid molecules and increasing the reservoirs natural resonance to the degree that it can break larger hydrocarbon molecules to smaller one and simultaneously reducing adhesion tension which results in increased mobility of hydrocarbons.The plasma pulse technology has been successfully used on production as well as injection wells.It has been used often as a remedial procedure to increase well's productivity that has been on production for a period of time.This paper throws light on fundamentals of this advancing plasma pulse technology,contrasting it with recent EOR techniques.Effectiveness of treatment in increasing oil recovery,it's applicability to different reservoir types and results achieved so far are also covered in the paper.