In this study, Natural Raw Kaolinite (NRK) clay was used as an adsorbent for the investigation of the adsorption kinetics, isotherms and thermodynamic parameters of a cationic dye Safranine-O, also known as Basic Red ...In this study, Natural Raw Kaolinite (NRK) clay was used as an adsorbent for the investigation of the adsorption kinetics, isotherms and thermodynamic parameters of a cationic dye Safranine-O, also known as Basic Red 2 (BR2) from aqueous solution. The effects of pH, temperature, initial dye concentration and contact time on the adsorption capacity were evaluated and the adsorbent was characterized by XRD, BET and FTIR. The pseudo-first-order, pseudo-second-order kinetic models and the intraparticle diffusion model were used to describe the kinetic data and the rate constants were evaluated. The experimental data fitted very well with the pseudo-second-order kinetic model and also followed intraparticle diffusion model revealing that diffusion is not only the rate-controlling step. The Langmuir Freundlich and Dubinin-Radushkevic adsorption models were applied to describe the equilibrium isotherms and the isotherm constants were also determined. The Langmuir model agrees with experimental data well. The activation energy, change of Gibbs free energy, enthalpy and entropy of adsorption were also evaluated for the adsorption of BR2 onto NRK.展开更多
文摘In this study, Natural Raw Kaolinite (NRK) clay was used as an adsorbent for the investigation of the adsorption kinetics, isotherms and thermodynamic parameters of a cationic dye Safranine-O, also known as Basic Red 2 (BR2) from aqueous solution. The effects of pH, temperature, initial dye concentration and contact time on the adsorption capacity were evaluated and the adsorbent was characterized by XRD, BET and FTIR. The pseudo-first-order, pseudo-second-order kinetic models and the intraparticle diffusion model were used to describe the kinetic data and the rate constants were evaluated. The experimental data fitted very well with the pseudo-second-order kinetic model and also followed intraparticle diffusion model revealing that diffusion is not only the rate-controlling step. The Langmuir Freundlich and Dubinin-Radushkevic adsorption models were applied to describe the equilibrium isotherms and the isotherm constants were also determined. The Langmuir model agrees with experimental data well. The activation energy, change of Gibbs free energy, enthalpy and entropy of adsorption were also evaluated for the adsorption of BR2 onto NRK.