期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Is platinum-loaded titania the best material for dye-sensitized hydrogen evolution under visible light?
1
作者 Haruka Yamamoto Langqiu Xiao +5 位作者 Yugo Miseki Hiroto Ueki Megumi Okazaki kazuhiro sayama Thomas E.Mallouk Kazuhiko Maeda 《Chinese Journal of Catalysis》 SCIE CAS CSCD 2024年第8期124-132,共9页
A dye-sensitized photocatalyst combining Pt-loaded TiO_(2) and Ru(Ⅱ)tris-diimine sensitizer(RuP)was constructed and its activity for photochemical hydrogen evolution was compared with that of Pt-intercalated HCa_(2)N... A dye-sensitized photocatalyst combining Pt-loaded TiO_(2) and Ru(Ⅱ)tris-diimine sensitizer(RuP)was constructed and its activity for photochemical hydrogen evolution was compared with that of Pt-intercalated HCa_(2)Nb_(3)O_(10) nanosheets.When the sacrificial donor ethylenediaminetetraacetic acid(EDTA)disodium salt dihydrate was used,RuP/Pt/TiO_(2) showed higher activity than RuP/Pt/HCa_(2)Nb_(3)O_(10).In contrast,when NaI(a reversible electron donor)was used,RuP/Pt/TiO_(2) showed little activity due to back electron transfer to the electron acceptor(I_(3)-),which was gener-ated as the oxidation product of I-.By modification with anionic polymers(sodium poly(styrenesulfonate)or sodium polymethacrylate)that could inhibit the scavenging of conduction band electrons by I_(3)-,the H_(2) production activity from aqueous NaI was improved,but it did not exceed that of RuP/Pt/HCa_(2)Nb_(3)O_(10).Transient absorption measurements showed that the rate of semiconductor-to-dye back electron transfer was slower in the case of TiO_(2) than HCa_(2)Nb_(3)O_(10),but the electron transfer reaction to I3-was much faster.These results indicate that Pt/TiO_(2) is useful for reactions with sacrificial reductants(e.g.,EDTA),where the back electron transfer reaction to the more reducible product can be neglected.However,more careful design of the catalyst will be nec-essary when a reversible electron donor is employed. 展开更多
关键词 Artificial photosynthesis Solar fuel Water splitting Z-scheme
下载PDF
Visible‐light‐driven nonsacrificial hydrogen evolution by modified carbon nitride photocatalysts 被引量:2
2
作者 Shunta Nishioka Kengo Shibata +2 位作者 Yugo Miseki kazuhiro sayama Kazuhiko Maeda 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 2022年第9期2316-2320,共5页
Pt‐loaded graphitic carbon nitride(g‐C_(3)N_(4))is known to be a good photocatalyst for H_(2) evolution under visible light.In most cases,however,sacrificial electron donors such as triethanolamine are required for ... Pt‐loaded graphitic carbon nitride(g‐C_(3)N_(4))is known to be a good photocatalyst for H_(2) evolution under visible light.In most cases,however,sacrificial electron donors such as triethanolamine are required for the water‐splitting operation,and nonsacrificial H_(2) evolution by g‐C_(3)N_(4) remains a challenge.In this work,we investigated the photocatalytic activities of carbon nitride nanosheet(NS‐C_(3)N_(4)),which was prepared by thermal treatment of urea,for nonsacrificial H_(2) evolution using reversible electron donors under visible light(λ>400 nm).Whereas Pt‐loaded NS‐C_(3)N_(4) did not produce H_(2) from aqueous solutions containing I−,Fe^(2+),or[Fe(CN)_(6)]^(4−),modification of the Pt/NS‐C_(3)N_(4) photocatalyst with CrO_(x) led to observable H_(2) evolution.Transmission electron microscopy observations and energy‐dispersive X‐ray spectroscopic analysis suggested that a Pt‐core/CrO_(x)‐shell structure was formed on the NS‐C_(3)N_(4).The CrO_(x)/Pt/NS‐C_(3)N_(4) served as a H_(2)‐evolution photocatalyst for visible‐light‐driven Z‐scheme overall water splitting,in combination with a modified WO_(3) photocatalyst,in the presence of a[Fe(CN)_(6)]^(3−/4−)redox mediator. 展开更多
关键词 Artificial photosynthesis Solar fuels Water splitting
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部