New observations of auroras based on the wide-field aurora imager(WAI)onboard Fengyun-3D(FY-3D)satellite are exhibited in this paper.Validity of the WAI data is analyzed by comparing auroral boundaries derived from WA...New observations of auroras based on the wide-field aurora imager(WAI)onboard Fengyun-3D(FY-3D)satellite are exhibited in this paper.Validity of the WAI data is analyzed by comparing auroral boundaries derived from WAI observations with results obtained from data collected by the Special Sensor Ultraviolet Spectrographic Imager(SSUSI)aboard the Defense Meteorological Satellite Program(DMSP F18).Dynamic variations of the aurora with the solar wind,interplanetary magnetic field(IMF)parameters,and the SYM-H index are also investigated.The comparison of auroral boundaries indicates that the WAI data are morphologically valid and suitable to the study of auroral dynamics.Effective responses to solar wind parameters indicate that the WAI data can be useful to monitor and predict the Earth’s space weather.Since the configuration of aurora is a good indicator of the solar wind–magnetosphere–ionosphere(SW-M-I)coupling system,and can reflect the disturbance of the space environment,the WAI will provide important data to help us to study the physical processes in space.展开更多
Extreme ultraviolet(EUV)observations are widely used in solar activity research and space weather forecasting since they can observe both the solar eruptions and the source regions of the solar wind.Flat field process...Extreme ultraviolet(EUV)observations are widely used in solar activity research and space weather forecasting since they can observe both the solar eruptions and the source regions of the solar wind.Flat field processing is indispensable to remove the instrumental non-uniformity of a solar EUV imager in producing high-quality scientific data from original observed data.FengYun-3E(FY-3E)is a meteorological satellite operated in a Sunsynchronous orbit,and the routine EUV imaging data from the Solar X-ray and Extreme Ultraviolet Imager(X-EUVI)onboard FY-3E has the characteristic of concentric rotation.Taking advantage of the concentric rotation,we propose a post-hoc flat field measurement method for its EUV 195A channel in this paper.This method removes the small-scale and time-varying component of coronal activities by taking the median value for each pixel along the time axis of a concentric rotation data cube,and then derives the large-scale and invariable component of the quiet coronal radiation,and finally generates a flat field image.The flat field can be generated with cadences from hundreds of minutes(one orbit)to several days.Higher flat field accuracy can be achieved by employing more data.Further analysis shows that our method is able to measure the instrumental spot-like nonuniformity possibly caused by contamination on the detector,which mostly disappears after the in-orbit selfcleaning process.It can also measure the quasi-periodic grid-like non-uniformity,possibly from the obscuration of the support mesh on the rear filter.After flat field correction,these instrumental non-uniformities from the original data are effectively removed.Moreover,the X-EUVI 195A data after dark and flat field corrections are consistent with the 193A imaging data from the Atmospheric Imaging Assembly onboard the Solar Dynamics Observatory,verifying the suitability of the method.The post-hoc method does not occupy observation time,which is advantageous for space weather operations.Our method is not only suitable for FY-3E/X-EUVI but also a candidate method for the flat field measurement of future solar EUV telescopes.展开更多
基金the National Science Foundation of China(41327802,41774152 and 41674155)in part by Youth Innovation Promotion Association of the Chinese Academy of Sciences(2017258)the Strategic Priority Program on Space Science,Chinese Academy of Sciences,Grant No.XDA15350203。
文摘New observations of auroras based on the wide-field aurora imager(WAI)onboard Fengyun-3D(FY-3D)satellite are exhibited in this paper.Validity of the WAI data is analyzed by comparing auroral boundaries derived from WAI observations with results obtained from data collected by the Special Sensor Ultraviolet Spectrographic Imager(SSUSI)aboard the Defense Meteorological Satellite Program(DMSP F18).Dynamic variations of the aurora with the solar wind,interplanetary magnetic field(IMF)parameters,and the SYM-H index are also investigated.The comparison of auroral boundaries indicates that the WAI data are morphologically valid and suitable to the study of auroral dynamics.Effective responses to solar wind parameters indicate that the WAI data can be useful to monitor and predict the Earth’s space weather.Since the configuration of aurora is a good indicator of the solar wind–magnetosphere–ionosphere(SW-M-I)coupling system,and can reflect the disturbance of the space environment,the WAI will provide important data to help us to study the physical processes in space.
基金supported by the National Key R&D Program of China(2021YFA0718600)the National Natural Science Foundations of China(NSFC,Grant Nos.41931073,41774195)+2 种基金Ten-thousand Talents Program of JingSong Wang,and the Specialized Research Fund for State Key Laboratoriessupported by the Strategic Priority Research Program of the Chinese Academy of Sciences,Grant No.XDA 15018400supported by the China Postdoctoral Science Foundation(2021M700246)。
文摘Extreme ultraviolet(EUV)observations are widely used in solar activity research and space weather forecasting since they can observe both the solar eruptions and the source regions of the solar wind.Flat field processing is indispensable to remove the instrumental non-uniformity of a solar EUV imager in producing high-quality scientific data from original observed data.FengYun-3E(FY-3E)is a meteorological satellite operated in a Sunsynchronous orbit,and the routine EUV imaging data from the Solar X-ray and Extreme Ultraviolet Imager(X-EUVI)onboard FY-3E has the characteristic of concentric rotation.Taking advantage of the concentric rotation,we propose a post-hoc flat field measurement method for its EUV 195A channel in this paper.This method removes the small-scale and time-varying component of coronal activities by taking the median value for each pixel along the time axis of a concentric rotation data cube,and then derives the large-scale and invariable component of the quiet coronal radiation,and finally generates a flat field image.The flat field can be generated with cadences from hundreds of minutes(one orbit)to several days.Higher flat field accuracy can be achieved by employing more data.Further analysis shows that our method is able to measure the instrumental spot-like nonuniformity possibly caused by contamination on the detector,which mostly disappears after the in-orbit selfcleaning process.It can also measure the quasi-periodic grid-like non-uniformity,possibly from the obscuration of the support mesh on the rear filter.After flat field correction,these instrumental non-uniformities from the original data are effectively removed.Moreover,the X-EUVI 195A data after dark and flat field corrections are consistent with the 193A imaging data from the Atmospheric Imaging Assembly onboard the Solar Dynamics Observatory,verifying the suitability of the method.The post-hoc method does not occupy observation time,which is advantageous for space weather operations.Our method is not only suitable for FY-3E/X-EUVI but also a candidate method for the flat field measurement of future solar EUV telescopes.