This paper discusses the problem of global state regulation via output feedback for a class of feedforward nonlinear time-delay systems with unknown measurement sensitivity. Different from previous works, the nonlinea...This paper discusses the problem of global state regulation via output feedback for a class of feedforward nonlinear time-delay systems with unknown measurement sensitivity. Different from previous works, the nonlinear terms are dominated by upper triangular linear unmeasured (delayed) states multiplied by unknown growth rate. The unknown growth rate is composed of an unknown constant, a power function of output, and an input function. Furthermore, due to the measurement uncertainty of the system output, it is more difficult to solve this problem. It is proved that the presented output feedback controller can globally regulate all states of the nonlinear systems using the dynamic gain scaling technique and choosing the appropriate Lyapunov–Krasovskii functionals.展开更多
基金supported by the fund of Beijing Municipal Commission of Education(Nos.22019821001 and KM202210017001)the Natural Science Foundation of Henan Province(No.222300420253).
文摘This paper discusses the problem of global state regulation via output feedback for a class of feedforward nonlinear time-delay systems with unknown measurement sensitivity. Different from previous works, the nonlinear terms are dominated by upper triangular linear unmeasured (delayed) states multiplied by unknown growth rate. The unknown growth rate is composed of an unknown constant, a power function of output, and an input function. Furthermore, due to the measurement uncertainty of the system output, it is more difficult to solve this problem. It is proved that the presented output feedback controller can globally regulate all states of the nonlinear systems using the dynamic gain scaling technique and choosing the appropriate Lyapunov–Krasovskii functionals.