Bone marrow mesenchymal stem cells were isolated from C57BL mice, transfected with the cytosine deaminase (CD) gene using a lentivirus vector and co-cultured with C6 glioma cells to verify anti-tumor effects of bone...Bone marrow mesenchymal stem cells were isolated from C57BL mice, transfected with the cytosine deaminase (CD) gene using a lentivirus vector and co-cultured with C6 glioma cells to verify anti-tumor effects of bone marrow mesenchymal stem cells carrying CD genes. C57MSC-CD/eGFP cells converted 5-fluorocytosine to 5-fluorouracil and exhibited significant inhibition of proliferation and apoptosis in C6 glioma cells. C57MSC-CD/eGFP cells were then implanted into rat models of brain C6 glioma. Rats were also intraperitoneally injected with 5-fluorocytosine after 7 days. MSC-CD/eGFP cells were irregularly distributed at the margin of the glioma, as well as encased and reduced the volume of the glioma. CD-transfected bone marrow mesenchymal stem cells inhibit the in vivo growth and in vitro proliferation of glioma.展开更多
This experiment sought to observe the migration and distribution of bone mesenchymal stem cells transfected with the cytosine deaminase gone (BMSCs-CD/eGFP) after transplantation in vivo through three pathways. In a...This experiment sought to observe the migration and distribution of bone mesenchymal stem cells transfected with the cytosine deaminase gone (BMSCs-CD/eGFP) after transplantation in vivo through three pathways. In addition, we examined the tropism of these cells to glioma. Intracranial C6 glioma models were established in Sprague-Dawley rats using an intracranial stereotactic inoculation method. When tumors were 7 days old, rats were inoculated with lx106 BMSCs-CD/eGFP cells via the tumor-bearing internal carotid artery, the contralateral hemisphere and the tumor-bearing glioma. Fluorescence microscopy revealed that BMSCs-CD/eGFP exhibited a strong capacity for migration to tumors. BMSCs-CD/eGFP transplanted via the tumor-bearing intemal carotid artery were observed to distribute in glioma tissues. BMSCs-CD/eGFP inoculated via the ipsilateral glioma mainly located within and at the edge of glioma tissues. BMSCs-CD/eGFP inoculated via the contralateral hemisphere mainly distributed at the proximal end of the tumor at the incubation site.展开更多
Breast cancer is the most common cancer in women and one of the deadliest cancers worldwide.According to the distribution of tumor tissue,breast cancer can be divided into invasive and non-invasive forms.The cancer ce...Breast cancer is the most common cancer in women and one of the deadliest cancers worldwide.According to the distribution of tumor tissue,breast cancer can be divided into invasive and non-invasive forms.The cancer cells in invasive breast cancer pass through the breast and through the immune system or systemic circulation to different parts of the body,forming metastatic breast cancer.Drug resistance and distant metastasis are the main causes of death from breast cancer.Research on breast cancer has attracted extensive attention from researchers.In vitro construction of tumor models by tissue engineering methods is a common tool for studying cancer mechanisms and anticancer drug screening.The tumor microenvironment consists of cancer cells and various types of stromal cells,including fibroblasts,endothelial cells,mesenchymal cells,and immune cells embedded in the extracellular matrix.The extracellular matrix contains fibrin proteins(such as types Ⅰ,Ⅱ,Ⅲ,Ⅳ,Ⅵ,and Ⅹ collagen and elastin)and glycoproteins(such as proteoglycan,laminin,and fibronectin),which are involved in cell signaling and binding of growth factors.The current traditional two-dimensional(2D)tumor models are limited by the growth environment and often cannot accurately reproduce the heterogeneity and complexity of tumor tissues in vivo.Therefore,in recent years,research on three-dimensional(3D)tumor models has gradually increased,especially 3D bioprinting models with high precision and repeatability.Compared with a 2D model,the 3D environment can better simulate the complex extracellular matrix components and structures in the tumor microenvironment.Three-dimensional models are often used as a bridge between 2D cellular level experiments and animal experiments.Acellular matrix,gelatin,sodium alginate,and other natural materials are widely used in the construction of tumor models because of their excellent biocompatibility and non-immune rejection.Here,we review various natural scaffold materials and construction methods involved in 3D tissue-engineered tumor models,as a reference for research in the field of breast cancer.展开更多
Large-scale expansion of the osteoblasts of a Sprague-Dawley(SD)rat was studied in a rotating wall hollow-fiber membrane bioreactor(RWHMB)by using hollow-fiber membrane as the carrier.For the sake of contrast,cells we...Large-scale expansion of the osteoblasts of a Sprague-Dawley(SD)rat was studied in a rotating wall hollow-fiber membrane bioreactor(RWHMB)by using hollow-fiber membrane as the carrier.For the sake of contrast,cells were also expanded in a T-flask using a hollow-fiber membrane as carrier and in a rotating wall vessel bioreactor(RWVB)using a microcarrier.During the culture period,the cells were sampled every 12 h,and after 5 days,the cells were harvested and evaluated with scanning electron microscopy(SEM),hematoxylin-eosin(HE)staining and alkaline phosphatase(ALP)staining.Moreover,von-Kossa staining and Alizarin Red S stain-ing were carried out for mineralized nodules formation.The results show that in RWHMB,the cells present better morphology and vitality and secrete much more extracel-lular matrix.It is concluded that the RWHMB combines the advantages of the rotating wall vessel and hollow-fiber membrane bioreactors.The hydrodynamic stimulation within it accelerates the metabolism of the osteoblast and mass transfer,which is propitious to cell differenti-ation and proliferation.展开更多
基金the Natural Science Foundation of Liaoning Province, No. 20092165a grant from Education Department of Liaoning Province, No. 2008Z081the Science and Technology Development Program of Dalian, No. 2008E13SF203
文摘Bone marrow mesenchymal stem cells were isolated from C57BL mice, transfected with the cytosine deaminase (CD) gene using a lentivirus vector and co-cultured with C6 glioma cells to verify anti-tumor effects of bone marrow mesenchymal stem cells carrying CD genes. C57MSC-CD/eGFP cells converted 5-fluorocytosine to 5-fluorouracil and exhibited significant inhibition of proliferation and apoptosis in C6 glioma cells. C57MSC-CD/eGFP cells were then implanted into rat models of brain C6 glioma. Rats were also intraperitoneally injected with 5-fluorocytosine after 7 days. MSC-CD/eGFP cells were irregularly distributed at the margin of the glioma, as well as encased and reduced the volume of the glioma. CD-transfected bone marrow mesenchymal stem cells inhibit the in vivo growth and in vitro proliferation of glioma.
基金the Natural Science Foundation of Liaoning Province, China, No. 20092165
文摘This experiment sought to observe the migration and distribution of bone mesenchymal stem cells transfected with the cytosine deaminase gone (BMSCs-CD/eGFP) after transplantation in vivo through three pathways. In addition, we examined the tropism of these cells to glioma. Intracranial C6 glioma models were established in Sprague-Dawley rats using an intracranial stereotactic inoculation method. When tumors were 7 days old, rats were inoculated with lx106 BMSCs-CD/eGFP cells via the tumor-bearing internal carotid artery, the contralateral hemisphere and the tumor-bearing glioma. Fluorescence microscopy revealed that BMSCs-CD/eGFP exhibited a strong capacity for migration to tumors. BMSCs-CD/eGFP transplanted via the tumor-bearing intemal carotid artery were observed to distribute in glioma tissues. BMSCs-CD/eGFP inoculated via the ipsilateral glioma mainly located within and at the edge of glioma tissues. BMSCs-CD/eGFP inoculated via the contralateral hemisphere mainly distributed at the proximal end of the tumor at the incubation site.
基金National Natural Science Foundation of China(No.31670978)Fok Ying Tung Education Foundation(No.132027)+2 种基金State Key Laboratory of Fine Chemicals(No.KF1111)Fundamental Research Funds for the Central Universities(Nos.DUT22YG213 and DUT22YG116)Basic and Applied Basic Research Major Program of Guangdong Province(No.2020B1515120001),China.
文摘Breast cancer is the most common cancer in women and one of the deadliest cancers worldwide.According to the distribution of tumor tissue,breast cancer can be divided into invasive and non-invasive forms.The cancer cells in invasive breast cancer pass through the breast and through the immune system or systemic circulation to different parts of the body,forming metastatic breast cancer.Drug resistance and distant metastasis are the main causes of death from breast cancer.Research on breast cancer has attracted extensive attention from researchers.In vitro construction of tumor models by tissue engineering methods is a common tool for studying cancer mechanisms and anticancer drug screening.The tumor microenvironment consists of cancer cells and various types of stromal cells,including fibroblasts,endothelial cells,mesenchymal cells,and immune cells embedded in the extracellular matrix.The extracellular matrix contains fibrin proteins(such as types Ⅰ,Ⅱ,Ⅲ,Ⅳ,Ⅵ,and Ⅹ collagen and elastin)and glycoproteins(such as proteoglycan,laminin,and fibronectin),which are involved in cell signaling and binding of growth factors.The current traditional two-dimensional(2D)tumor models are limited by the growth environment and often cannot accurately reproduce the heterogeneity and complexity of tumor tissues in vivo.Therefore,in recent years,research on three-dimensional(3D)tumor models has gradually increased,especially 3D bioprinting models with high precision and repeatability.Compared with a 2D model,the 3D environment can better simulate the complex extracellular matrix components and structures in the tumor microenvironment.Three-dimensional models are often used as a bridge between 2D cellular level experiments and animal experiments.Acellular matrix,gelatin,sodium alginate,and other natural materials are widely used in the construction of tumor models because of their excellent biocompatibility and non-immune rejection.Here,we review various natural scaffold materials and construction methods involved in 3D tissue-engineered tumor models,as a reference for research in the field of breast cancer.
文摘Large-scale expansion of the osteoblasts of a Sprague-Dawley(SD)rat was studied in a rotating wall hollow-fiber membrane bioreactor(RWHMB)by using hollow-fiber membrane as the carrier.For the sake of contrast,cells were also expanded in a T-flask using a hollow-fiber membrane as carrier and in a rotating wall vessel bioreactor(RWVB)using a microcarrier.During the culture period,the cells were sampled every 12 h,and after 5 days,the cells were harvested and evaluated with scanning electron microscopy(SEM),hematoxylin-eosin(HE)staining and alkaline phosphatase(ALP)staining.Moreover,von-Kossa staining and Alizarin Red S stain-ing were carried out for mineralized nodules formation.The results show that in RWHMB,the cells present better morphology and vitality and secrete much more extracel-lular matrix.It is concluded that the RWHMB combines the advantages of the rotating wall vessel and hollow-fiber membrane bioreactors.The hydrodynamic stimulation within it accelerates the metabolism of the osteoblast and mass transfer,which is propitious to cell differenti-ation and proliferation.