We developed an apparatus for producing high-density hydrogen plasma. The atomic hydrogen density was 3.1 × 1021 m<sup>?3</sup> at a pressure of 30 Pa, a microwave power of 1000 W, and a hydrogen gas ...We developed an apparatus for producing high-density hydrogen plasma. The atomic hydrogen density was 3.1 × 1021 m<sup>?3</sup> at a pressure of 30 Pa, a microwave power of 1000 W, and a hydrogen gas flow rate of 10 sccm. We confirmed that the temperatures of transition-metal films increased to above 800<sup>。</sup>C within 5 s when they were exposed to hydrogen plasma formed using the apparatus. We applied this phenomenon to the selective heat treatment of nickel films deposited on silicon wafers and formed nickel silicide electrodes. We found that this heat phenomenon automatically stopped after the nickel slicidation reaction finished. To utilize this method, we can perform the nickel silicidation process without heating the other areas such as channel regions and improve the reliability of silicon ultralarge-scale integration devices.展开更多
We developed an apparatus for producing high-density hydrogen plasma. We confirmed that the temperatures of transition-metal films increased to above 800?C within 5 s when they were exposed to hydrogen plasma formed u...We developed an apparatus for producing high-density hydrogen plasma. We confirmed that the temperatures of transition-metal films increased to above 800?C within 5 s when they were exposed to hydrogen plasma formed using the apparatus. We applied this phenomenon to the selective heat treatment of W/Ni films deposited on n+4H-SiC wafers and formed nickel silicide electrodes. To utilize this method, we can perform the nickel silicidation process without heating the other areas such as channel regions and improve the reliability.展开更多
Strained Si and its related materials, such as strained SiGe and strained silicon-carbon alloy (Si-C), are receiving tremendous interest due to their high carrier mobility. In this study we carry out a basic investiga...Strained Si and its related materials, such as strained SiGe and strained silicon-carbon alloy (Si-C), are receiving tremendous interest due to their high carrier mobility. In this study we carry out a basic investigation of the change in microstructure of ion-implanted Si-C solid solution caused by rapid thermal annealing, because it is very important to realize a field-effect transistor made of this new material. The microstructures of arsenic-ion-, boron-ion-, and silicon-ion-implanted Si0.99C0.01 specimens upon thermal annealing are observed using transmission electron microscopy, and it is revealed that the rate of solid-state crystallization of ion-implanted Si-C is slower than that of the ion-implanted Si.展开更多
We have developed a microwave plasma heating technique to rapidly heat the transition metal. W/SiO2 layers were deposited on Ge/Si heterostructures. By heating the W, dislocations in Ge layers originated from lattice ...We have developed a microwave plasma heating technique to rapidly heat the transition metal. W/SiO2 layers were deposited on Ge/Si heterostructures. By heating the W, dislocations in Ge layers originated from lattice mismatch between Ge and Si crystals were reduced drastically. We have fabricated p- MOSFETs on Ge/Si substrates and realized higher mobility of about 380 cm2/ Vs than that of Si p-MOSFET.展开更多
We deposited Ge films on Si substrates by molecular beam epitaxy (MBE) method. The specimens were annealed at around 750 C using microwave- plasma heating technique which we had reported before. After these pro- cesse...We deposited Ge films on Si substrates by molecular beam epitaxy (MBE) method. The specimens were annealed at around 750 C using microwave- plasma heating technique which we had reported before. After these pro- cesses, we carried out special scanning transmission electron microscopic (STEM) observation. The moiré between the crystal lattices and the scanning lines controlled by STEM was utilized to show lattice-spacing distribution. The results exhibited that we were succeeded in forming lattice-relaxed Ge thin films. It was also recognized that this STEM moiré technique is very useful to observe lattice-spacing distribution for large area with high resolution.展开更多
Lattice-strained Si thin films grown onto SiGe(110)/Si(110) are attracting because of their potential to realize high-speed transistors. In this study we observe surface morphology of Si/SiGe/Si(110) using scanning el...Lattice-strained Si thin films grown onto SiGe(110)/Si(110) are attracting because of their potential to realize high-speed transistors. In this study we observe surface morphology of Si/SiGe/Si(110) using scanning electron microscopy and we also observe microstructure of the identical position using cross-sectional transmission electron microscopy. These results reveal that crossing of stress-induced twins causes remarkable surface roughness. We propose using vicinal substrate to avoid this phenomenon and our successive experimental results are shown in this paper.展开更多
We have developed an apparatus for producing high-density hydrogen plasma. The atomic hydrogen density was 3.0 × 1021 m?3 at a pressure of 30 Pa, a microwave power of 1000 W, and a hydrogen gas flow rate of 5 scc...We have developed an apparatus for producing high-density hydrogen plasma. The atomic hydrogen density was 3.0 × 1021 m?3 at a pressure of 30 Pa, a microwave power of 1000 W, and a hydrogen gas flow rate of 5 sccm. We confirmed that the temperatures of tungsten films increased to above 1000?C within 5 s when they were exposed to hydrogen plasma formed using the apparatus. We applied this phenomenon to the selective heat treatment of tungsten films deposited on amorphous silicon films on glass substrates and formed polycrystalline silicon films. To utilize this method, we can perform the crystalline process only on device regions. TFTs were fabricated on the polycrystalline silicon films and the electron mobilities of 60 cm2/Vs were obtained.展开更多
A moiré between crystal lattice planes and scanning electron beam-lines formed in a scanning transmission electron microscope includes the information of the lattice spacing. We apply these phenomena to a composi...A moiré between crystal lattice planes and scanning electron beam-lines formed in a scanning transmission electron microscope includes the information of the lattice spacing. We apply these phenomena to a compositionally graded SiGe thin film deposited onto a Si substrate by molecular beam epitaxy method. The results of the experiments and image analysis show the potential of this technique to analyze a slight change of the lattice spacing according to a compositional change.展开更多
文摘We developed an apparatus for producing high-density hydrogen plasma. The atomic hydrogen density was 3.1 × 1021 m<sup>?3</sup> at a pressure of 30 Pa, a microwave power of 1000 W, and a hydrogen gas flow rate of 10 sccm. We confirmed that the temperatures of transition-metal films increased to above 800<sup>。</sup>C within 5 s when they were exposed to hydrogen plasma formed using the apparatus. We applied this phenomenon to the selective heat treatment of nickel films deposited on silicon wafers and formed nickel silicide electrodes. We found that this heat phenomenon automatically stopped after the nickel slicidation reaction finished. To utilize this method, we can perform the nickel silicidation process without heating the other areas such as channel regions and improve the reliability of silicon ultralarge-scale integration devices.
文摘We developed an apparatus for producing high-density hydrogen plasma. We confirmed that the temperatures of transition-metal films increased to above 800?C within 5 s when they were exposed to hydrogen plasma formed using the apparatus. We applied this phenomenon to the selective heat treatment of W/Ni films deposited on n+4H-SiC wafers and formed nickel silicide electrodes. To utilize this method, we can perform the nickel silicidation process without heating the other areas such as channel regions and improve the reliability.
文摘Strained Si and its related materials, such as strained SiGe and strained silicon-carbon alloy (Si-C), are receiving tremendous interest due to their high carrier mobility. In this study we carry out a basic investigation of the change in microstructure of ion-implanted Si-C solid solution caused by rapid thermal annealing, because it is very important to realize a field-effect transistor made of this new material. The microstructures of arsenic-ion-, boron-ion-, and silicon-ion-implanted Si0.99C0.01 specimens upon thermal annealing are observed using transmission electron microscopy, and it is revealed that the rate of solid-state crystallization of ion-implanted Si-C is slower than that of the ion-implanted Si.
文摘We have developed a microwave plasma heating technique to rapidly heat the transition metal. W/SiO2 layers were deposited on Ge/Si heterostructures. By heating the W, dislocations in Ge layers originated from lattice mismatch between Ge and Si crystals were reduced drastically. We have fabricated p- MOSFETs on Ge/Si substrates and realized higher mobility of about 380 cm2/ Vs than that of Si p-MOSFET.
文摘We deposited Ge films on Si substrates by molecular beam epitaxy (MBE) method. The specimens were annealed at around 750 C using microwave- plasma heating technique which we had reported before. After these pro- cesses, we carried out special scanning transmission electron microscopic (STEM) observation. The moiré between the crystal lattices and the scanning lines controlled by STEM was utilized to show lattice-spacing distribution. The results exhibited that we were succeeded in forming lattice-relaxed Ge thin films. It was also recognized that this STEM moiré technique is very useful to observe lattice-spacing distribution for large area with high resolution.
文摘Lattice-strained Si thin films grown onto SiGe(110)/Si(110) are attracting because of their potential to realize high-speed transistors. In this study we observe surface morphology of Si/SiGe/Si(110) using scanning electron microscopy and we also observe microstructure of the identical position using cross-sectional transmission electron microscopy. These results reveal that crossing of stress-induced twins causes remarkable surface roughness. We propose using vicinal substrate to avoid this phenomenon and our successive experimental results are shown in this paper.
文摘We have developed an apparatus for producing high-density hydrogen plasma. The atomic hydrogen density was 3.0 × 1021 m?3 at a pressure of 30 Pa, a microwave power of 1000 W, and a hydrogen gas flow rate of 5 sccm. We confirmed that the temperatures of tungsten films increased to above 1000?C within 5 s when they were exposed to hydrogen plasma formed using the apparatus. We applied this phenomenon to the selective heat treatment of tungsten films deposited on amorphous silicon films on glass substrates and formed polycrystalline silicon films. To utilize this method, we can perform the crystalline process only on device regions. TFTs were fabricated on the polycrystalline silicon films and the electron mobilities of 60 cm2/Vs were obtained.
文摘A moiré between crystal lattice planes and scanning electron beam-lines formed in a scanning transmission electron microscope includes the information of the lattice spacing. We apply these phenomena to a compositionally graded SiGe thin film deposited onto a Si substrate by molecular beam epitaxy method. The results of the experiments and image analysis show the potential of this technique to analyze a slight change of the lattice spacing according to a compositional change.