Various single or multi-modality therapeutic options are available to treat pain of bone metastasis in patients with prostate cancer.Different radionuclides that emitβ-rays such as 153Samarium and 89Strontium and ach...Various single or multi-modality therapeutic options are available to treat pain of bone metastasis in patients with prostate cancer.Different radionuclides that emitβ-rays such as 153Samarium and 89Strontium and achieve palliation are commercially available.In contrast toβ-emitters,223Radium as a a-emitter has a short path-length.The advantage of the a-emitter is thus a highly localized biological effect that is caused by radiation induced DNA double-strand breaks and subsequent cell killing and/or limited effectiveness of cellular repair mechanisms.Due to the limited range of the a-particles the bone surface to red bone marrow dose ratio is also lower for 223Radium which is expressed in a lower myelotoxicity.The a emitter 223Radium dichloride is the first radiopharmaceutical that significantly prolongslife in castrate resistant prostate cancer patients with wide-spread bone metastatic disease.In a phaseⅢ,randomized,double-blind,placebo-controlled study 921patients with castration-resistant prostate cancer and bone metastases were randomly assigned.The analysis confirmed the 223Radium survival benefit compared to the placebo(median,14.9 mo vs 11.3 mo;P<0.001).In addition,the treatment results in pain palliation and thus,improved quality of life and a delay of skeletal related events.At the same time the toxicity profile of223Radium was favourable.Since May 2013,223Radium dichloride(Xofigo?)is approved by the US Food and Drug Administration.展开更多
Background: Inhibition of the lymphoma surface antigen CD40 by the antagonistic CD40 antibody NVP-HCD122 (HCD122) demonstrates activity in various lymphoma subtypes. In this preclinical in vivo study we examined the s...Background: Inhibition of the lymphoma surface antigen CD40 by the antagonistic CD40 antibody NVP-HCD122 (HCD122) demonstrates activity in various lymphoma subtypes. In this preclinical in vivo study we examined the suitability of positron emission tomography (PET) using the thymidine analogue 3’-deoxy-3’-[18F]fluorothymidine (FLT) for early response assessment upon HCD122 treatment in diffuse large B cell lymphoma (DLBCL). Methods: Immunodeficient mice bearing human DLBCL xenografts (SU-DHL-4) received weekly intraperitoneal injections of HCD122. Tumor growth was followed up until Day 14. Molecular imaging with FLT-PET was performed before (Day 0) and after start of therapy (Day 2 and Day 7). On Day 14 lymphoma xenografts were explanted for immunohistochemical analysis to correlate PET findings with CD40 surface expression on tumor tissue. Results: Treatment with HCD122 significantly delayed tumor growth resulting in a tumor growth inhibition of 45% on Day 14. Significant reduction of tumor-to-background ratio (TBR) of FLT-PET was seen in treated animals on Day 7 and preceded change of tumor volume, thus predicting therapy response to HCD122. Immunohistochemical analysis of xenografts revealed significantly higher CD40 expression on treated than on untreated tissue. Moreover, we found a significant correlation between CD40 expression and FLT-PET response for xenograft tumor treated with HCD122. Conclusions: Treatment of DLBCL with the antagonistic CD40 antibody HCD122 can be monitored with FLT-PET as early as seven days after commencement of therapy and seems to increase CD40 expression on tumor tissue.展开更多
文摘Various single or multi-modality therapeutic options are available to treat pain of bone metastasis in patients with prostate cancer.Different radionuclides that emitβ-rays such as 153Samarium and 89Strontium and achieve palliation are commercially available.In contrast toβ-emitters,223Radium as a a-emitter has a short path-length.The advantage of the a-emitter is thus a highly localized biological effect that is caused by radiation induced DNA double-strand breaks and subsequent cell killing and/or limited effectiveness of cellular repair mechanisms.Due to the limited range of the a-particles the bone surface to red bone marrow dose ratio is also lower for 223Radium which is expressed in a lower myelotoxicity.The a emitter 223Radium dichloride is the first radiopharmaceutical that significantly prolongslife in castrate resistant prostate cancer patients with wide-spread bone metastatic disease.In a phaseⅢ,randomized,double-blind,placebo-controlled study 921patients with castration-resistant prostate cancer and bone metastases were randomly assigned.The analysis confirmed the 223Radium survival benefit compared to the placebo(median,14.9 mo vs 11.3 mo;P<0.001).In addition,the treatment results in pain palliation and thus,improved quality of life and a delay of skeletal related events.At the same time the toxicity profile of223Radium was favourable.Since May 2013,223Radium dichloride(Xofigo?)is approved by the US Food and Drug Administration.
文摘Background: Inhibition of the lymphoma surface antigen CD40 by the antagonistic CD40 antibody NVP-HCD122 (HCD122) demonstrates activity in various lymphoma subtypes. In this preclinical in vivo study we examined the suitability of positron emission tomography (PET) using the thymidine analogue 3’-deoxy-3’-[18F]fluorothymidine (FLT) for early response assessment upon HCD122 treatment in diffuse large B cell lymphoma (DLBCL). Methods: Immunodeficient mice bearing human DLBCL xenografts (SU-DHL-4) received weekly intraperitoneal injections of HCD122. Tumor growth was followed up until Day 14. Molecular imaging with FLT-PET was performed before (Day 0) and after start of therapy (Day 2 and Day 7). On Day 14 lymphoma xenografts were explanted for immunohistochemical analysis to correlate PET findings with CD40 surface expression on tumor tissue. Results: Treatment with HCD122 significantly delayed tumor growth resulting in a tumor growth inhibition of 45% on Day 14. Significant reduction of tumor-to-background ratio (TBR) of FLT-PET was seen in treated animals on Day 7 and preceded change of tumor volume, thus predicting therapy response to HCD122. Immunohistochemical analysis of xenografts revealed significantly higher CD40 expression on treated than on untreated tissue. Moreover, we found a significant correlation between CD40 expression and FLT-PET response for xenograft tumor treated with HCD122. Conclusions: Treatment of DLBCL with the antagonistic CD40 antibody HCD122 can be monitored with FLT-PET as early as seven days after commencement of therapy and seems to increase CD40 expression on tumor tissue.