The feasibility of estimating patient-specific dose verification results directly from linear accelerator (linac) log files has been investigated for prostate cancer patients who undergo volumetric modulated arc thera...The feasibility of estimating patient-specific dose verification results directly from linear accelerator (linac) log files has been investigated for prostate cancer patients who undergo volumetric modulated arc therapy (VMAT). Twenty-six patients who underwent VMAT in our facility were consecutively selected. VMAT plans were created using Monaco treatment planning system and were transferred to an Elekta linac. During the beam delivery, dynamic machine parameters such as positions of the multi-leaf collimator and the gantry were recorded in the log files;subsequently, root mean square (rms) values of control errors, speeds and accelerations of the above machine parameters were calculated for each delivery. Dose verification was performed for all the plans using a cylindrical phantom with diodes placed in a spiral array. The gamma index pass rates were evaluated under 3%/3 mm and 2%/2 mm criteria with a dose threshold of 10%. Subsequently, the correlation coefficients between the gamma index pass rates and each of the above rms values were calculated. Under the 2%/2 mm criteria, significant negative correlations were found between the gamma index pass rates and the rms gantry angle errors (r = 0.64, p < 0.001) as well as the pass rates and the rms gantry accelerations (r = 0.68, p < 0.001). On the other hand, the rms values of the other dynamic machine parameters did not significantly correlate with the gamma index pass rates. We suggest that the VMAT quality assurance (QA) results can be directly estimated from the log file thereby providing potential to simplify patient-specific prostate VMAT QA procedure.展开更多
Deformable image registration (DIR) has been an important component in adaptive radiotherapy (ART). Our goal was to examine the accuracy of ART using the dice similarity coefficient (DSC) and to determine the optimal ...Deformable image registration (DIR) has been an important component in adaptive radiotherapy (ART). Our goal was to examine the accuracy of ART using the dice similarity coefficient (DSC) and to determine the optimal timing of replanning. A total of 22 patients who underwent volume modulated arc therapy (VMAT) for head and neck (H&N) cancers were prospectively analyzed. The planning target volume (PTV) was to receive a total of 70 Gy in 33 fractions. A second planning CT scan (rescan) was performed at the 15th fraction. The DSC was calculated for each structure on both CT scans. The continuous variables to predict the need for replanning were assessed. The optimal cut-off value was determined using receiver operating characteristic (ROC) curve analysis. In the correlation between body weight loss and DSC of each structure, weight loss correlated negatively with DSC of the whole face (rs = -0.45) and the face surface (rs = -0.51). Patients who required replanning tended to have experienced rapid weight loss. The threshold DSC was 0.98 and 0.60 in the whole face and the face surface, respectively. Patients who showed low DSC in the whole face and the face surface required replanning at a significantly high rate (P < 0.05 and P < 0.01). Weight loss correlated with DSC in both the whole face and the face surface (P < 0.05 and P < 0.05). The DSC values in the face predicted the need for replanning. In addition, weight loss tended to correlate with DSC. DIR during ART was found to be a useful tool for replanning.展开更多
The purpose of this study was to investigate the relationship between plan parameters verified with DICOM-RT and dosimetric results for volumetric modulated arc therapy (VMAT). We investigated three treatment location...The purpose of this study was to investigate the relationship between plan parameters verified with DICOM-RT and dosimetric results for volumetric modulated arc therapy (VMAT). We investigated three treatment locations: prostate cancer (ten cases), maxillary sinus cancer (four cases), and malignant pleura mesothelioma (four cases) with treatment plans generated by a MonacoTM treatment planning system (TPS), and delivered with an Elekta SynergyTM linear accelerator. We calculated plan parameters, including gantry and multileaf collimator (MLC) positions, Monitor Units (MU), and millimeters of MLC motion per degree of gantry rotation (mm/degree), and performed quality assurance (QA) with a DICOM-RT plan verification system. We measured the VMAT dose with a two-dimensional diode array detector. The average gamma passing rate with percent dose acceptance criteria and distance to agreement criteria of 2 mm and 2% (2 mm/2%) were 97.4%, 97.8% and 92.0% for prostate cancer, maxillary sinus cancer, and malignant pleural mesothelioma, respectively. The mean 95th percentile value for DICOM-calculated mm/degree was 4.0, 5.2, and 11.1 for prostate cancer, maxillary sinus cancer, and malignant pleural mesothelioma, respectively. The gamma passing rate showed a correlation with calculated mm/degree, with a coefficient of determination (R2) of 0.60. Higher calculated mm/degree values led to increased dosimetric errors. We conclude that dose distribution calculated by a TPS is more reliable at smaller mm/degree.展开更多
The purpose of this study was to investigate the prediction of mechanical error using DICOM-RT plan parameters for volumetric modulated arc therapy (VMAT). We created plans for gantry rotation arcs of 360° and 18...The purpose of this study was to investigate the prediction of mechanical error using DICOM-RT plan parameters for volumetric modulated arc therapy (VMAT). We created plans for gantry rotation arcs of 360° and 180° (full-arc and half-arc VMAT) for six maxillary sinus cancer cases using a Monaco treatment planning system, and delivered the doses with a linear accelerator. We calculated DICOM-RT plan parameters, including gantry, multileaf collimator (MLC) positions and Monitor Units (MU). We compared plans with regard to gantry angle per MU (degrees/MU) and MLC travel per MU (mm/MU) for each segment. Calculated gantry angle/MLC position speeds and errors were evaluated by comparison with the log file. On average, the half-arc VMAT plan resulted in 47% and 35% fewer degrees/MU and mm/MU than the full-arc VMAT plan, respectively. The root mean square (r.m.s.) gantry and MLC speeds showed a linear relationship with calculated degrees/MU and mm/MU, with coefficients of determination (R2) of 0.86 and 0.72, respectively. The r.m.s. gantry angle and MLC position errors showed a linear relationship with calculated degrees/MU and mm/MU with R2 of 0.63 and 0.76, respectively. Deviations from plan parameters were related to mechanical error for VMAT, and provided quantitative information without the need for VMAT delivery. These parameters can be used in the selection of treatment planning.展开更多
文摘The feasibility of estimating patient-specific dose verification results directly from linear accelerator (linac) log files has been investigated for prostate cancer patients who undergo volumetric modulated arc therapy (VMAT). Twenty-six patients who underwent VMAT in our facility were consecutively selected. VMAT plans were created using Monaco treatment planning system and were transferred to an Elekta linac. During the beam delivery, dynamic machine parameters such as positions of the multi-leaf collimator and the gantry were recorded in the log files;subsequently, root mean square (rms) values of control errors, speeds and accelerations of the above machine parameters were calculated for each delivery. Dose verification was performed for all the plans using a cylindrical phantom with diodes placed in a spiral array. The gamma index pass rates were evaluated under 3%/3 mm and 2%/2 mm criteria with a dose threshold of 10%. Subsequently, the correlation coefficients between the gamma index pass rates and each of the above rms values were calculated. Under the 2%/2 mm criteria, significant negative correlations were found between the gamma index pass rates and the rms gantry angle errors (r = 0.64, p < 0.001) as well as the pass rates and the rms gantry accelerations (r = 0.68, p < 0.001). On the other hand, the rms values of the other dynamic machine parameters did not significantly correlate with the gamma index pass rates. We suggest that the VMAT quality assurance (QA) results can be directly estimated from the log file thereby providing potential to simplify patient-specific prostate VMAT QA procedure.
文摘Deformable image registration (DIR) has been an important component in adaptive radiotherapy (ART). Our goal was to examine the accuracy of ART using the dice similarity coefficient (DSC) and to determine the optimal timing of replanning. A total of 22 patients who underwent volume modulated arc therapy (VMAT) for head and neck (H&N) cancers were prospectively analyzed. The planning target volume (PTV) was to receive a total of 70 Gy in 33 fractions. A second planning CT scan (rescan) was performed at the 15th fraction. The DSC was calculated for each structure on both CT scans. The continuous variables to predict the need for replanning were assessed. The optimal cut-off value was determined using receiver operating characteristic (ROC) curve analysis. In the correlation between body weight loss and DSC of each structure, weight loss correlated negatively with DSC of the whole face (rs = -0.45) and the face surface (rs = -0.51). Patients who required replanning tended to have experienced rapid weight loss. The threshold DSC was 0.98 and 0.60 in the whole face and the face surface, respectively. Patients who showed low DSC in the whole face and the face surface required replanning at a significantly high rate (P < 0.05 and P < 0.01). Weight loss correlated with DSC in both the whole face and the face surface (P < 0.05 and P < 0.05). The DSC values in the face predicted the need for replanning. In addition, weight loss tended to correlate with DSC. DIR during ART was found to be a useful tool for replanning.
文摘The purpose of this study was to investigate the relationship between plan parameters verified with DICOM-RT and dosimetric results for volumetric modulated arc therapy (VMAT). We investigated three treatment locations: prostate cancer (ten cases), maxillary sinus cancer (four cases), and malignant pleura mesothelioma (four cases) with treatment plans generated by a MonacoTM treatment planning system (TPS), and delivered with an Elekta SynergyTM linear accelerator. We calculated plan parameters, including gantry and multileaf collimator (MLC) positions, Monitor Units (MU), and millimeters of MLC motion per degree of gantry rotation (mm/degree), and performed quality assurance (QA) with a DICOM-RT plan verification system. We measured the VMAT dose with a two-dimensional diode array detector. The average gamma passing rate with percent dose acceptance criteria and distance to agreement criteria of 2 mm and 2% (2 mm/2%) were 97.4%, 97.8% and 92.0% for prostate cancer, maxillary sinus cancer, and malignant pleural mesothelioma, respectively. The mean 95th percentile value for DICOM-calculated mm/degree was 4.0, 5.2, and 11.1 for prostate cancer, maxillary sinus cancer, and malignant pleural mesothelioma, respectively. The gamma passing rate showed a correlation with calculated mm/degree, with a coefficient of determination (R2) of 0.60. Higher calculated mm/degree values led to increased dosimetric errors. We conclude that dose distribution calculated by a TPS is more reliable at smaller mm/degree.
文摘The purpose of this study was to investigate the prediction of mechanical error using DICOM-RT plan parameters for volumetric modulated arc therapy (VMAT). We created plans for gantry rotation arcs of 360° and 180° (full-arc and half-arc VMAT) for six maxillary sinus cancer cases using a Monaco treatment planning system, and delivered the doses with a linear accelerator. We calculated DICOM-RT plan parameters, including gantry, multileaf collimator (MLC) positions and Monitor Units (MU). We compared plans with regard to gantry angle per MU (degrees/MU) and MLC travel per MU (mm/MU) for each segment. Calculated gantry angle/MLC position speeds and errors were evaluated by comparison with the log file. On average, the half-arc VMAT plan resulted in 47% and 35% fewer degrees/MU and mm/MU than the full-arc VMAT plan, respectively. The root mean square (r.m.s.) gantry and MLC speeds showed a linear relationship with calculated degrees/MU and mm/MU, with coefficients of determination (R2) of 0.86 and 0.72, respectively. The r.m.s. gantry angle and MLC position errors showed a linear relationship with calculated degrees/MU and mm/MU with R2 of 0.63 and 0.76, respectively. Deviations from plan parameters were related to mechanical error for VMAT, and provided quantitative information without the need for VMAT delivery. These parameters can be used in the selection of treatment planning.