Caffeine intake during pregnancy is common,while its effect on gut microbiota composition of offspring and the relationship with susceptibility to adult diseases remains unclear.This study aimed to confirm the effects...Caffeine intake during pregnancy is common,while its effect on gut microbiota composition of offspring and the relationship with susceptibility to adult diseases remains unclear.This study aimed to confirm the effects of prenatal caffeine exposure(PCE)on the gut microbiota composition and its metabolites in female offspring rats,and to further elucidate its underlying mechanism and intervention targets in adult non-alcoholic fatty disease(NAFLD).The results showed that the gut microbiota of PCE female offspring at multiple time points from infancy to adolescence were significantly changed with depletion of butyric acid-producing bacteria,leading to a decrease in butyric acid in adulthood.It was also found that PCE female offspring rats were sensitive to NAFLD induced by a postnatal high-fat diet(HFD),which is mainly related to the enhancement of hepatic triglyceride synthesis function.Through mechanism exploration,we found that HFD further reduced the fecal and serum butyric acid levels in the PCE female offspring,which was significantly negatively correlated with hepatic SREBP-1c/FASN mRNA expression and triglyceride level.In vivo and in vitro experiments confirmed that sodium butyrate(NaB)supplementation could reduce hepatic lipid accumulation through MCT1/GPR109A-AMPK,thereby effectively decreasing the susceptibility to NAFLD in the PCE female offspring rats.展开更多
Shrimp(Penaeus vannamei)proteins have been shown an allergenic potential;however,little information is available on the sensitizing and eliciting capacity of shrimp protein digestion products.In this study,a BALB/c mi...Shrimp(Penaeus vannamei)proteins have been shown an allergenic potential;however,little information is available on the sensitizing and eliciting capacity of shrimp protein digestion products.In this study,a BALB/c mice model was used to explore the allergenicity of shrimp protein sample(SPS)and their gastric and gastrointestinal digestion products(GDS/GIDS).As compared with the SPS groups,the GDS/GIDS groups caused lower specific immunoglobulins(Ig E/Ig G1)levels(P<0.05),but higher than the control groups,indicating that the digestion products sensitized the mice.Meanwhile,spleen index,mouse mast cell protease-1(m MCP-1)concentration and proportion of degranulated mast cells were significantly reduced in the GDS/GIDS groups(P<0.05);simultaneously,allergic symptoms,vascular permeability and histopathological changes of tissues were alleviated.Nevertheless,the allergenicity of digestion products cannot be eliminated and still cause systemic allergic reactions in mice.The study showed that the digestion products of shrimp still had high sensitizing and eliciting capacity.展开更多
Ginsenoside Rc,a dammarane-type tetracyclic triterpenoid saponin primarily derived from Panax ginseng,has garnered significant attention due to its diverse pharmacological properties.This review outlined the sources,p...Ginsenoside Rc,a dammarane-type tetracyclic triterpenoid saponin primarily derived from Panax ginseng,has garnered significant attention due to its diverse pharmacological properties.This review outlined the sources,putative biosynthetic pathways,extraction,and quantification techniques,as well as the pharmacokinetic properties of ginsenoside Rc.Furthermore,this study explored the pharmacological effects of ginsenoside Rc against metabolic syndrome(MetS)across various phenotypes including obesity,diabetes,atherosclerosis,non-alcoholic fatty liver disease,and osteoarthritis.It also highlighted the impact of ginsenoside Rc on multiple associated signaling molecules.In conclusion,the anti-MetS effect of ginsenoside Rc is characterized by its influence on multiple organs,multiple targets,and multiple ways.Although clinical investigations regarding the effects of ginsenoside Rc on MetS are limited,its proven safety and tolerability suggest its potential as an effective treatment option.展开更多
The pursuit of high energy density has promoted the development of high-performance lithium metal batteries.However,it faces a serious security problem.Ionic liquids have attracted great attention due to their high io...The pursuit of high energy density has promoted the development of high-performance lithium metal batteries.However,it faces a serious security problem.Ionic liquids have attracted great attention due to their high ionic conductivity,non-flammability,and the properties of promoting the formation of stable SEI films.Deeply understanding the problems existing in lithium metal batteries and the role of ionic liquids in them is of great significance for improving the performance of lithium metal batteries.This article reviews the effects of the molecular structure of ionic liquids on ionic conductivity,Li^(+)ion transference number,electrochemical stability window,and lithium metal anode/electrolyte interface,as well as the application of ionic liquids in Li-high voltage cathode batteries,Li-O_(2) batteries and Li-S batteries.The molecular design,composition and polymerization will be the main strategies for the future development of ionic liquid-based electrolytes for high performance lithium metal battery.展开更多
This study aimed to clarify that organic anion transporters(OATs)mediate the drug–drug interaction(DDI)between imipenem and cilastatin.After co-administration with imipenem,the plasma concentrations and the plasma co...This study aimed to clarify that organic anion transporters(OATs)mediate the drug–drug interaction(DDI)between imipenem and cilastatin.After co-administration with imipenem,the plasma concentrations and the plasma concentration-time curve(AUC)of cilastatin were significantly increased,while renal clearance and cumulative urinary excretion of cilastatin were decreased.At the same time,imipenem significantly inhibited the uptake of cilastatin in rat kidney slices and in human OAT1(hOAT1)-HEK293 and human OAT3(hOAT3)-HEK293 cells.Probenecid,p-aminohippurate,and benzylpenicillin inhibited the uptake of imipenem and cilastatin in rat kidney slices and in hOAT1-and hOAT3-HEK 293 cells,respectively.The uptakes of imipenem and cilastatin in hOAT1-and hOAT3-HEK 293 cells were significantly higher than that in mock-HEK-293 cells.Moreover,the K m values of cilastatin were increased in the presence of imipenem with unchanged V max,indicating that imipenem inhibited the uptake of cilastatin in a competitive manner.When imipenem and cilastatin were co-administered,the level of imipenem was higher compared with imipenem alone both in vivo and in vitro.But,cilastatin significantly inhibited the uptake of imipenem when dehydropeptidase-1(DPEP1)was silenced by RNAi technology in hOAT1-and hOAT3-HEK 293 cells.In conclusion,imipenem and cilastatin are the substrates of OAT1 and OAT3.OAT1 and OAT3 mediate the DDI between imipenem and cilastatin.Meanwhile,cilastatin also reduces the hydrolysis of imipenem by inhibiting the uptake of imipenem mediated by OAT1 and OAT3 in the kidney as a complement.展开更多
As an external treatment technique of traditional Chinese medicine(TCM),auricular point sticking,which is rooted in holographic biology theory and TCM viscera and meridian theory,is a safe and effective treatment meth...As an external treatment technique of traditional Chinese medicine(TCM),auricular point sticking,which is rooted in holographic biology theory and TCM viscera and meridian theory,is a safe and effective treatment method.This article introduces the technology overview and development process.The auricular point sticking technique for constipation is taken as an example to specify the basic requirements,assessment,operational points,acupoint selection and matters needing attention during the implementation of the auricular acupressure technique,providing a reference for the operating procedures of this technique in the clinical treatment of other diseases such as insomnia,diarrhea,colds,hypertension,headache,and dysmenorrhea.展开更多
To assess the mechanism of the pharmacokinetic interaction between piperacillin and tazobactam,renal excretion and pharmacokinetic studies of piperacillin/tazobactam were investigated in normal and bacteremia rats.A b...To assess the mechanism of the pharmacokinetic interaction between piperacillin and tazobactam,renal excretion and pharmacokinetic studies of piperacillin/tazobactam were investigated in normal and bacteremia rats.A bacteremia model was established to investigate the pharmacokinetic properties of piperacillin and tazobactam under different conditions.Renal slices were taken to examine the uptake of piperacillin and tazobactam.Pharmacokinetic studies ofβ-lactamase in rats were performed to study the contribution of rOat1/3 to the inhibition of tazobactam onβ-lactamase.The AUC(from 2.93±0.58 to 6.52±1.44 mg·min/ml)and the plasma clearance(CL P)(from 2.41±1.20 to 0.961±0.212 ml/min/kg)of tazobactam were both altered after the intravenous coadministration of piperacillin and tazobactam in the bacteremia rats.The renal clearance(CL R)of tazobactam decreased from 1.30±0.50 to 0.361±0.043 ml/min/kg.In summary,there was a beneficial interaction between piperacillin and tazobactam mediated by rOat1 and rOat3.Piperacillin enhances the inhibitory effect of tazobactam onβ-lactamase through the inhibition of rOat1 and rOat3 in rats.The contribution rate of rOat1/3 for the synergistic effect was 20%when the two drugs were coadministered.展开更多
Most drug products on the global pharmaceutical market are administered orally.The absorption of oral drug in the intestine is an important factor to determine the drug bioavailability.There are many intestinal transp...Most drug products on the global pharmaceutical market are administered orally.The absorption of oral drug in the intestine is an important factor to determine the drug bioavailability.There are many intestinal transporters expressed on the small intestine and the transporters can be classified into two major families,SLC family and ABC family.They mediate drug absorption,distribution,excretion and drugedrug interaction.Understanding the transport mechanism can improve the effectivity and safety of drug and guide clinical rational use of drugs.The roles of drug transporters can be assessed in vitro and in vivo,using techniques spanning from cellular expression systems to gene knockout animals.The purposes of this article were to introduce the main transporters in the intestinal tract,to explain the transport mechanism and to compare the limitations and applications of techniques used to evaluate interactions of drugs and transporters.展开更多
Porphine has a great potential application in molecular electronic devices.In this work,based on the density functional theory(DFT)and combining with nonequilibrium Green's function(NEGF),we study the transport pr...Porphine has a great potential application in molecular electronic devices.In this work,based on the density functional theory(DFT)and combining with nonequilibrium Green's function(NEGF),we study the transport properties of the molecular devices constructed by the covalent homocoupling of porphine molecules conjunction with zigzag graphene nanoribbons electrodes.We find that different couple phases bring remarkable differences in the transport properties.Different coupling phases have different application prospects.We analyze and discuss the differences in transport properties through the molecular energy spectrum,electrostatic difference potential,local density of states(LDOS),and transmission pathway.The results are of great significance for the design of porphine molecular devices in the future.展开更多
Soil salinity has a major impact on rice seed germination,severely limiting rice production.Herein,a rice germination defective mutant under salt stress(gdss)was identified by using chemical mutagenesis.The GDSS gene ...Soil salinity has a major impact on rice seed germination,severely limiting rice production.Herein,a rice germination defective mutant under salt stress(gdss)was identified by using chemical mutagenesis.The GDSS gene was detected via MutMap and shown to encode potassium transporter OsHAK9.Phenotypic analysis of complementation and mutant lines demonstrated that OsHAK9 was an essential regulator responsible for seed germination under salt stress.OsHAK9 is highly expressed in germinating seed embryos.Ion contents and non-invasive micro-test technology results showed that OsHAK9 restricted K^(+)efflux in salt-exposed germinating seeds for the balance of K^(+)/Na^(+).Disruption of OsHAK9 significantly reduced gibberellin 4(GA4)levels,and the germination defective phenotype of oshak9a was partly rescued by exogenous GA_(3)treatment under salt stress.RNA sequencing(RNA-seq)and real-time quantitative polymerase chain reaction analysis demonstrated that the disruption of OsHAK9 improved the GA-deactivated gene OsGA2ox7 expression in germinating seeds under salt stress,and the expression of OsGA2ox7 was significantly inhibited by salt stress.Null mutants of OsGA2ox7 created using clustered,regularly interspaced,short palindromic repeat(CRISPR)/CRISPR-associated nuclease 9 approach displayed a dramatically increased seed germination ability under salt stress.Overall,our results highlight that OsHAK9 regulates seed germination performance under salt stress involving preventing GA degradation by mediating OsGA2ox7,which provides a novel clue about the relationship between GA and OsHAKs in rice.展开更多
Reproduction is of great importance for the continuation of the species.In insects,the fat body is the major tissue for nutrient storage and involved in vitellogenesis,which is essential for female reproduction.Here,2...Reproduction is of great importance for the continuation of the species.In insects,the fat body is the major tissue for nutrient storage and involved in vitellogenesis,which is essential for female reproduction.Here,2 proteins,hexamerin and allergen,were separated from the fat bodies of adult female American cockroaches(Periplaneta americana)and identified as storage proteins,encoding for 733 amino acids with molecular weight of 87.88 kDa and 686 amino acids with molecular weight of 82.18 kDa,respectively.The encoding genes of these 2 storage proteins are mainly expressed in the fat body.RNA interference-mediated knockdown of Hexamerin and Allergen in the early stage of the first reproductive cycle in females suppressed vitellogenesis and ovarian maturation,indicating that these storage proteins are involved in controlling reproduction.Importantly,the expression of Hexamerin and Allergen was repressed by knockdown of the juvenile hormone(JH)receptor gene Met and the primary response gene Kr-h1,and was induced by methoprene,a JH analog,in both in vivo and in vitro experiments.Altogether,we have determined that hexamerin and allergen are identified as storage proteins and play an important role in promoting female reproduction in the American cockroach.The expression of their encoding genes is induced by JH signaling.Our data reveal a novel mechanism by which hexamerin and allergen are necessary for JH-stimulated female reproduction.展开更多
The organic cocrystal strategy has provided a convenient and efficient platform for preparing organic photothermal materials.However,the rapidly directional preparation of cocrystals with desirable photothermal proper...The organic cocrystal strategy has provided a convenient and efficient platform for preparing organic photothermal materials.However,the rapidly directional preparation of cocrystals with desirable photothermal properties remains challenging due to a lack of suitable design ideas.Here,two new photothermal cocrystals,MTC and MFC,based on acceptor molecules(TCNQ and F4TCNQ)with different electron-withdrawing capacities were quickly prepared by the coprecipitation method,aiming to explore the effect of charge transfer(CT)interaction on photothermal properties.Compared with MTC,the stronger intermolecular CT interaction in MFC facilitates extending the absorption range(from the NIR-I to the NIR-II region)and enhancing the non-radiative transition process.Under the 808 nm laser irradiation,the photothermal conversion efficiency(PCE)of MFC is 54.6%,whereas MTC displays a mere 36.8%.The MFC cocrystal was further combined with a flexible polymer substrate(HPDMS)to prepare a flexible wearable heater(HPDMS@MFC),which exhibits excellent NIR-II photothermal performance.This work points out a research direction for the rapid assembly of efficient photothermal cocrystals and additionally provides an extensive application prospect for organic photothermal cocrystals in the field of wearable devices.展开更多
In Internet of Things(loT),data sharing among different devices can improve manufacture efficiency and reduce workload,and yet make the network systems be more vulnerable to various intrusion attacks.There has been re...In Internet of Things(loT),data sharing among different devices can improve manufacture efficiency and reduce workload,and yet make the network systems be more vulnerable to various intrusion attacks.There has been realistic demand to develop an efficient intrusion detection algorithm for connected devices.Most of existing intrusion detection methods are trained in a centralized manner and are incapable to identify new unlabeled attack types.In this paper,a distributed federated intrusion detection method is proposed,utilizing the information contained in the labeled data as the prior knowledge to discover new unlabeled attack types.Besides,the blockchain technique is introduced in the federated learning process for the consensus of the entire framework.Experimental results are provided to show that our approach can identify the malicious entities,while outperforming the existing methods in discovering new intrusion attack types.展开更多
A concept of divergence angle of light beams(DALB)is proposed to analyze the depth of field(DOF)of a 3D light-field display system.The mathematical model between DOF and DALB is established,and the conclusion that DOF...A concept of divergence angle of light beams(DALB)is proposed to analyze the depth of field(DOF)of a 3D light-field display system.The mathematical model between DOF and DALB is established,and the conclusion that DOF and DALB are inversely proportional is drawn.To reduce DALB and generate clear depth perception,a triple composite aspheric lens structure with a viewing angle of 100°is designed and experimentally demonstrated.The DALB-constrained 3D light-field display system significantly improves the clarity of 3D images and also performs well in imaging at a 3D scene with a DOF over 30 cm.展开更多
基金funded by the National Natural Science Foundation of China(82030111,U23A20407)the National Key Research and Development Program of China(2020YFA0803900)+1 种基金the Major Technological Innovation Projects of Hubei Province(2019ACA140)Hubei Province’s Outstanding Medical Academic Leader program,and the Basic and Clinical Medical Research Joint Fund of Zhongnan Hospital,Wuhan University(ZNLH202208).
文摘Caffeine intake during pregnancy is common,while its effect on gut microbiota composition of offspring and the relationship with susceptibility to adult diseases remains unclear.This study aimed to confirm the effects of prenatal caffeine exposure(PCE)on the gut microbiota composition and its metabolites in female offspring rats,and to further elucidate its underlying mechanism and intervention targets in adult non-alcoholic fatty disease(NAFLD).The results showed that the gut microbiota of PCE female offspring at multiple time points from infancy to adolescence were significantly changed with depletion of butyric acid-producing bacteria,leading to a decrease in butyric acid in adulthood.It was also found that PCE female offspring rats were sensitive to NAFLD induced by a postnatal high-fat diet(HFD),which is mainly related to the enhancement of hepatic triglyceride synthesis function.Through mechanism exploration,we found that HFD further reduced the fecal and serum butyric acid levels in the PCE female offspring,which was significantly negatively correlated with hepatic SREBP-1c/FASN mRNA expression and triglyceride level.In vivo and in vitro experiments confirmed that sodium butyrate(NaB)supplementation could reduce hepatic lipid accumulation through MCT1/GPR109A-AMPK,thereby effectively decreasing the susceptibility to NAFLD in the PCE female offspring rats.
基金financially supported by the National Natural Science Foundation of China(32022067)the Dalian Sci-Tech Talent Innovation Support Program(2022RY04)。
文摘Shrimp(Penaeus vannamei)proteins have been shown an allergenic potential;however,little information is available on the sensitizing and eliciting capacity of shrimp protein digestion products.In this study,a BALB/c mice model was used to explore the allergenicity of shrimp protein sample(SPS)and their gastric and gastrointestinal digestion products(GDS/GIDS).As compared with the SPS groups,the GDS/GIDS groups caused lower specific immunoglobulins(Ig E/Ig G1)levels(P<0.05),but higher than the control groups,indicating that the digestion products sensitized the mice.Meanwhile,spleen index,mouse mast cell protease-1(m MCP-1)concentration and proportion of degranulated mast cells were significantly reduced in the GDS/GIDS groups(P<0.05);simultaneously,allergic symptoms,vascular permeability and histopathological changes of tissues were alleviated.Nevertheless,the allergenicity of digestion products cannot be eliminated and still cause systemic allergic reactions in mice.The study showed that the digestion products of shrimp still had high sensitizing and eliciting capacity.
文摘Ginsenoside Rc,a dammarane-type tetracyclic triterpenoid saponin primarily derived from Panax ginseng,has garnered significant attention due to its diverse pharmacological properties.This review outlined the sources,putative biosynthetic pathways,extraction,and quantification techniques,as well as the pharmacokinetic properties of ginsenoside Rc.Furthermore,this study explored the pharmacological effects of ginsenoside Rc against metabolic syndrome(MetS)across various phenotypes including obesity,diabetes,atherosclerosis,non-alcoholic fatty liver disease,and osteoarthritis.It also highlighted the impact of ginsenoside Rc on multiple associated signaling molecules.In conclusion,the anti-MetS effect of ginsenoside Rc is characterized by its influence on multiple organs,multiple targets,and multiple ways.Although clinical investigations regarding the effects of ginsenoside Rc on MetS are limited,its proven safety and tolerability suggest its potential as an effective treatment option.
基金the National Natural Science Foundation of China(21503131 and 51711530162)the Shanghai Municipal Science and Technology Commission(19640770300)+2 种基金the Shanghai Engineering Research Center of New Materials and Application for Resources and Environment(18DZ2281400)the Professional and Technical Service Platform for Designing and Manufacturing of Advanced Composite Materials(Shanghai)(19DZ2293100)the Engineering Research Center of Material Composition and Advanced Dispersion Technology,Ministry of Education。
文摘The pursuit of high energy density has promoted the development of high-performance lithium metal batteries.However,it faces a serious security problem.Ionic liquids have attracted great attention due to their high ionic conductivity,non-flammability,and the properties of promoting the formation of stable SEI films.Deeply understanding the problems existing in lithium metal batteries and the role of ionic liquids in them is of great significance for improving the performance of lithium metal batteries.This article reviews the effects of the molecular structure of ionic liquids on ionic conductivity,Li^(+)ion transference number,electrochemical stability window,and lithium metal anode/electrolyte interface,as well as the application of ionic liquids in Li-high voltage cathode batteries,Li-O_(2) batteries and Li-S batteries.The molecular design,composition and polymerization will be the main strategies for the future development of ionic liquid-based electrolytes for high performance lithium metal battery.
基金supported by a grant from the National Natural Science Foundation of China (No. 81874324,81473280,U1608283)the Natural Science Foundation of Liaoning (No. 20170540293)Dalian Science and technology innovation fund (No. 2018J12SN065).
文摘This study aimed to clarify that organic anion transporters(OATs)mediate the drug–drug interaction(DDI)between imipenem and cilastatin.After co-administration with imipenem,the plasma concentrations and the plasma concentration-time curve(AUC)of cilastatin were significantly increased,while renal clearance and cumulative urinary excretion of cilastatin were decreased.At the same time,imipenem significantly inhibited the uptake of cilastatin in rat kidney slices and in human OAT1(hOAT1)-HEK293 and human OAT3(hOAT3)-HEK293 cells.Probenecid,p-aminohippurate,and benzylpenicillin inhibited the uptake of imipenem and cilastatin in rat kidney slices and in hOAT1-and hOAT3-HEK 293 cells,respectively.The uptakes of imipenem and cilastatin in hOAT1-and hOAT3-HEK 293 cells were significantly higher than that in mock-HEK-293 cells.Moreover,the K m values of cilastatin were increased in the presence of imipenem with unchanged V max,indicating that imipenem inhibited the uptake of cilastatin in a competitive manner.When imipenem and cilastatin were co-administered,the level of imipenem was higher compared with imipenem alone both in vivo and in vitro.But,cilastatin significantly inhibited the uptake of imipenem when dehydropeptidase-1(DPEP1)was silenced by RNAi technology in hOAT1-and hOAT3-HEK 293 cells.In conclusion,imipenem and cilastatin are the substrates of OAT1 and OAT3.OAT1 and OAT3 mediate the DDI between imipenem and cilastatin.Meanwhile,cilastatin also reduces the hydrolysis of imipenem by inhibiting the uptake of imipenem mediated by OAT1 and OAT3 in the kidney as a complement.
文摘As an external treatment technique of traditional Chinese medicine(TCM),auricular point sticking,which is rooted in holographic biology theory and TCM viscera and meridian theory,is a safe and effective treatment method.This article introduces the technology overview and development process.The auricular point sticking technique for constipation is taken as an example to specify the basic requirements,assessment,operational points,acupoint selection and matters needing attention during the implementation of the auricular acupressure technique,providing a reference for the operating procedures of this technique in the clinical treatment of other diseases such as insomnia,diarrhea,colds,hypertension,headache,and dysmenorrhea.
基金supported by the National Natural Science Foundation of China(Nos.81874324,81473280,U1608283,81603186)
文摘To assess the mechanism of the pharmacokinetic interaction between piperacillin and tazobactam,renal excretion and pharmacokinetic studies of piperacillin/tazobactam were investigated in normal and bacteremia rats.A bacteremia model was established to investigate the pharmacokinetic properties of piperacillin and tazobactam under different conditions.Renal slices were taken to examine the uptake of piperacillin and tazobactam.Pharmacokinetic studies ofβ-lactamase in rats were performed to study the contribution of rOat1/3 to the inhibition of tazobactam onβ-lactamase.The AUC(from 2.93±0.58 to 6.52±1.44 mg·min/ml)and the plasma clearance(CL P)(from 2.41±1.20 to 0.961±0.212 ml/min/kg)of tazobactam were both altered after the intravenous coadministration of piperacillin and tazobactam in the bacteremia rats.The renal clearance(CL R)of tazobactam decreased from 1.30±0.50 to 0.361±0.043 ml/min/kg.In summary,there was a beneficial interaction between piperacillin and tazobactam mediated by rOat1 and rOat3.Piperacillin enhances the inhibitory effect of tazobactam onβ-lactamase through the inhibition of rOat1 and rOat3 in rats.The contribution rate of rOat1/3 for the synergistic effect was 20%when the two drugs were coadministered.
文摘Most drug products on the global pharmaceutical market are administered orally.The absorption of oral drug in the intestine is an important factor to determine the drug bioavailability.There are many intestinal transporters expressed on the small intestine and the transporters can be classified into two major families,SLC family and ABC family.They mediate drug absorption,distribution,excretion and drugedrug interaction.Understanding the transport mechanism can improve the effectivity and safety of drug and guide clinical rational use of drugs.The roles of drug transporters can be assessed in vitro and in vivo,using techniques spanning from cellular expression systems to gene knockout animals.The purposes of this article were to introduce the main transporters in the intestinal tract,to explain the transport mechanism and to compare the limitations and applications of techniques used to evaluate interactions of drugs and transporters.
基金Project supported by the National Natural Science Foundation of China(Grant No.11774085)Hunan Provincial Natural Science Foundation of China(Grant No.2019JJ50016)+1 种基金the General Project of Education Department in Hunan,China(Grant No.19C261)Science Foundation of Hengyang Normal University(Nos.18D26 and 18D27).
文摘Porphine has a great potential application in molecular electronic devices.In this work,based on the density functional theory(DFT)and combining with nonequilibrium Green's function(NEGF),we study the transport properties of the molecular devices constructed by the covalent homocoupling of porphine molecules conjunction with zigzag graphene nanoribbons electrodes.We find that different couple phases bring remarkable differences in the transport properties.Different coupling phases have different application prospects.We analyze and discuss the differences in transport properties through the molecular energy spectrum,electrostatic difference potential,local density of states(LDOS),and transmission pathway.The results are of great significance for the design of porphine molecular devices in the future.
基金supported by the National Natural Science Foundation of China(Grant Nos.32272169,32000377,32172037,and 31601387)the Natural Science Foundation of Guangdong Province(Grant No.2022A1515110449)the Hainan Yazhou Bay Seed Laboratory(project of B21HJ1002)。
文摘Soil salinity has a major impact on rice seed germination,severely limiting rice production.Herein,a rice germination defective mutant under salt stress(gdss)was identified by using chemical mutagenesis.The GDSS gene was detected via MutMap and shown to encode potassium transporter OsHAK9.Phenotypic analysis of complementation and mutant lines demonstrated that OsHAK9 was an essential regulator responsible for seed germination under salt stress.OsHAK9 is highly expressed in germinating seed embryos.Ion contents and non-invasive micro-test technology results showed that OsHAK9 restricted K^(+)efflux in salt-exposed germinating seeds for the balance of K^(+)/Na^(+).Disruption of OsHAK9 significantly reduced gibberellin 4(GA4)levels,and the germination defective phenotype of oshak9a was partly rescued by exogenous GA_(3)treatment under salt stress.RNA sequencing(RNA-seq)and real-time quantitative polymerase chain reaction analysis demonstrated that the disruption of OsHAK9 improved the GA-deactivated gene OsGA2ox7 expression in germinating seeds under salt stress,and the expression of OsGA2ox7 was significantly inhibited by salt stress.Null mutants of OsGA2ox7 created using clustered,regularly interspaced,short palindromic repeat(CRISPR)/CRISPR-associated nuclease 9 approach displayed a dramatically increased seed germination ability under salt stress.Overall,our results highlight that OsHAK9 regulates seed germination performance under salt stress involving preventing GA degradation by mediating OsGA2ox7,which provides a novel clue about the relationship between GA and OsHAKs in rice.
基金This work was supported by the National Natural Science Foundation of China(Grant No.32100379)the Natural Science Foundation of Guangdong Province(Grant No.2023A1515010512)+1 种基金the GuangDong Basic and Applied Basic Research Foundation(Grant No.2020A1515110285)the China Postdoctoral Science Foundation(Grant No.2020M672678).English was polished by the Nature Publishing Group.
文摘Reproduction is of great importance for the continuation of the species.In insects,the fat body is the major tissue for nutrient storage and involved in vitellogenesis,which is essential for female reproduction.Here,2 proteins,hexamerin and allergen,were separated from the fat bodies of adult female American cockroaches(Periplaneta americana)and identified as storage proteins,encoding for 733 amino acids with molecular weight of 87.88 kDa and 686 amino acids with molecular weight of 82.18 kDa,respectively.The encoding genes of these 2 storage proteins are mainly expressed in the fat body.RNA interference-mediated knockdown of Hexamerin and Allergen in the early stage of the first reproductive cycle in females suppressed vitellogenesis and ovarian maturation,indicating that these storage proteins are involved in controlling reproduction.Importantly,the expression of Hexamerin and Allergen was repressed by knockdown of the juvenile hormone(JH)receptor gene Met and the primary response gene Kr-h1,and was induced by methoprene,a JH analog,in both in vivo and in vitro experiments.Altogether,we have determined that hexamerin and allergen are identified as storage proteins and play an important role in promoting female reproduction in the American cockroach.The expression of their encoding genes is induced by JH signaling.Our data reveal a novel mechanism by which hexamerin and allergen are necessary for JH-stimulated female reproduction.
基金the National Key R&D Program(2022YFB3603800)the National Natural Science Foundation of China(52121002,U21A6002)+1 种基金Tianjin Natural Science Foundation(20JCJQJC00300)the Fundamental ResearchFunds forthe Central Universities.
文摘The organic cocrystal strategy has provided a convenient and efficient platform for preparing organic photothermal materials.However,the rapidly directional preparation of cocrystals with desirable photothermal properties remains challenging due to a lack of suitable design ideas.Here,two new photothermal cocrystals,MTC and MFC,based on acceptor molecules(TCNQ and F4TCNQ)with different electron-withdrawing capacities were quickly prepared by the coprecipitation method,aiming to explore the effect of charge transfer(CT)interaction on photothermal properties.Compared with MTC,the stronger intermolecular CT interaction in MFC facilitates extending the absorption range(from the NIR-I to the NIR-II region)and enhancing the non-radiative transition process.Under the 808 nm laser irradiation,the photothermal conversion efficiency(PCE)of MFC is 54.6%,whereas MTC displays a mere 36.8%.The MFC cocrystal was further combined with a flexible polymer substrate(HPDMS)to prepare a flexible wearable heater(HPDMS@MFC),which exhibits excellent NIR-II photothermal performance.This work points out a research direction for the rapid assembly of efficient photothermal cocrystals and additionally provides an extensive application prospect for organic photothermal cocrystals in the field of wearable devices.
基金This work was supported in part by the National Key R&D Program of China(2018AAA0101100)the National Natural Science Foundation of China(Grant Nos.62022008 and 92067204).
文摘In Internet of Things(loT),data sharing among different devices can improve manufacture efficiency and reduce workload,and yet make the network systems be more vulnerable to various intrusion attacks.There has been realistic demand to develop an efficient intrusion detection algorithm for connected devices.Most of existing intrusion detection methods are trained in a centralized manner and are incapable to identify new unlabeled attack types.In this paper,a distributed federated intrusion detection method is proposed,utilizing the information contained in the labeled data as the prior knowledge to discover new unlabeled attack types.Besides,the blockchain technique is introduced in the federated learning process for the consensus of the entire framework.Experimental results are provided to show that our approach can identify the malicious entities,while outperforming the existing methods in discovering new intrusion attack types.
基金supported by the National Key Research and Development Program of China(No.2021YFB3600504)the National Natural Science Foundation of China(Nos.62175015 and 62075016)。
文摘A concept of divergence angle of light beams(DALB)is proposed to analyze the depth of field(DOF)of a 3D light-field display system.The mathematical model between DOF and DALB is established,and the conclusion that DOF and DALB are inversely proportional is drawn.To reduce DALB and generate clear depth perception,a triple composite aspheric lens structure with a viewing angle of 100°is designed and experimentally demonstrated.The DALB-constrained 3D light-field display system significantly improves the clarity of 3D images and also performs well in imaging at a 3D scene with a DOF over 30 cm.