期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Intelligent Autonomous-Robot Control for Medical Applications 被引量:3
1
作者 Rihem Farkh Haykel Marouani +3 位作者 khaled al jaloud Saad alhuwaimel Mohammad Tabrez Quasim Yasser Fouad 《Computers, Materials & Continua》 SCIE EI 2021年第8期2189-2203,共15页
The COVID-19 pandemic has shown that there is a lack of healthcare facilities to cope with a pandemic.This has also underscored the immediate need to rapidly develop hospitals capable of dealing with infectious patien... The COVID-19 pandemic has shown that there is a lack of healthcare facilities to cope with a pandemic.This has also underscored the immediate need to rapidly develop hospitals capable of dealing with infectious patients and to rapidly change in supply lines to manufacture the prescription goods(including medicines)that is needed to prevent infection and treatment for infected patients.The COVID-19 has shown the utility of intelligent autonomous robots that assist human efforts to combat a pandemic.The artificial intelligence based on neural networks and deep learning can help to fight COVID-19 in many ways,particularly in the control of autonomous medic robots.Health officials aim to curb the spread of COVID-19 among medical,nursing staff and patients by using intelligent robots.We propose an advanced controller for a service robot to be used in hospitals.This type of robot is deployed to deliver food and dispense medications to individual patients.An autonomous line-follower robot that can sense and follow a line drawn on the floor and drive through the rooms of patients with control of its direction.These criteria were met by using two controllers simultaneously:a deep neural network controller to predict the trajectory of movement and a proportional-integral-derivative(PID)controller for automatic steering and speed control. 展开更多
关键词 Autonomous medic robots PID control neural network control system real-time implementation navigation environment differential drive system
下载PDF
Computer Vision-Control-Based CNN-PID for Mobile Robot 被引量:1
2
作者 Rihem Farkh Mohammad Tabrez Quasim +2 位作者 khaled al jaloud Saad alhuwaimel Shams Tabrez Siddiqui 《Computers, Materials & Continua》 SCIE EI 2021年第7期1065-1079,共15页
With the development of artificial intelligence technology,various sectors of industry have developed.Among them,the autonomous vehicle industry has developed considerably,and research on self-driving control systems ... With the development of artificial intelligence technology,various sectors of industry have developed.Among them,the autonomous vehicle industry has developed considerably,and research on self-driving control systems using artificial intelligence has been extensively conducted.Studies on the use of image-based deep learning to monitor autonomous driving systems have recently been performed.In this paper,we propose an advanced control for a serving robot.A serving robot acts as an autonomous line-follower vehicle that can detect and follow the line drawn on the floor and move in specified directions.The robot should be able to follow the trajectory with speed control.Two controllers were used simultaneously to achieve this.Convolutional neural networks(CNNs)are used for target tracking and trajectory prediction,and a proportional-integral-derivative controller is designed for automatic steering and speed control.This study makes use of a Raspberry PI,which is responsible for controlling the robot car and performing inference using CNN,based on its current image input. 展开更多
关键词 Autonomous car pid control deep learning convolutional neural network differential drive system raspberry pi
下载PDF
Deep Learning Control for Autonomous Robot
3
作者 Rihem Farkh Saad alhuwaimel +2 位作者 Sultan alzahrani khaled al jaloud Mohammad Tabrez Quasim 《Computers, Materials & Continua》 SCIE EI 2022年第8期2811-2824,共14页
Several applications of machine learning and artificial intelligence,have acquired importance and come to the fore as a result of recent advances and improvements in these approaches.Autonomous cars are one such appli... Several applications of machine learning and artificial intelligence,have acquired importance and come to the fore as a result of recent advances and improvements in these approaches.Autonomous cars are one such application.This is expected to have a significant and revolutionary influence on society.Integration with smart cities,new infrastructure and urban planning with sophisticated cyber-security are some of the current ramifications of self-driving automobiles.The autonomous automobile,often known as selfdriving systems or driverless vehicles,is a vehicle that can perceive its surroundings and navigate predetermined routes without human involvement.Cars are on the verge of evolving into autonomous robots,thanks to significant breakthroughs in artificial intelligence and related technologies,and this will have a wide range of socio-economic implications.However,in order for these automobiles to become a reality,they must be endowed with the perception and cognition necessary to deal with high-pressure real-life events and make proper judgments and take appropriate action.The majority of self-driving car technologies are based on computer systems that automate vehicle control parts.From forward-collision warning and antilock brakes to lane-keeping and adaptive drive control,to fully automated driving,these technological components have a wide range of capabilities.A self-driving car combines a wide range of sensors,actuators,and cameras.Recent researches on computer vision and deep learning are used to control autonomous driving systems.For self-driving automobiles,lane-keeping is crucial.This study presents a deep learning approach to obtain the proper steering angle to maintain the robot in the lane.We propose an advanced control for a selfdriving robot by using two controllers simultaneously.Convolutional neural networks(CNNs)are employed,to predict the car’and a proportionalintegral-derivative(PID)controller is designed for speed and steering control.This study uses a Raspberry PI based camera to control the robot car. 展开更多
关键词 Autonomous car cascade PID control deep learning convolutional neural network differential drive system raspberry PI road lane detector
下载PDF
An Improved Machine Learning Technique with Effective Heart Disease Prediction System
4
作者 Mohammad Tabrez Quasim Saad alhuwaimel +4 位作者 Asadullah Shaikh Yousef Asiri Khairan Rajab Rihem Farkh khaled al jaloud 《Computers, Materials & Continua》 SCIE EI 2021年第12期4169-4181,共13页
Heart disease is the leading cause of death worldwide.Predicting heart disease is challenging because it requires substantial experience and knowledge.Several research studies have found that the diagnostic accuracy o... Heart disease is the leading cause of death worldwide.Predicting heart disease is challenging because it requires substantial experience and knowledge.Several research studies have found that the diagnostic accuracy of heart disease is low.The coronary heart disorder determines the state that influences the heart valves,causing heart disease.Two indications of coronary heart disorder are strep throat with a red persistent skin rash,and a sore throat covered by tonsils or strep throat.This work focuses on a hybrid machine learning algorithm that helps predict heart attacks and arterial stiffness.At first,we achieved the component perception measured by using a hybrid cuckoo search particle swarm optimization(CSPSO)algorithm.With this perception measure,characterization and accuracy were improved,while the execution time of the proposed model was decreased.The CSPSO-deep recurrent neural network algorithm resolved issues that state-of-the-art methods face.Our proposed method offers an illustrative framework that helps predict heart attacks with high accuracy.The proposed technique demonstrates the model accuracy,which reached 0.97 with the applied dataset. 展开更多
关键词 Machine learning deep recurrent neural network effective heart disease prediction framework
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部