期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Mechanical wet-milling and subsequent consolidation of ultra-fine Al_2O_3-(ZrO_2+3%Y_2O_3) bioceramics by using high-frequency induction heat sintering 被引量:4
1
作者 khalil abdelrazek khalil Sug Won KIM 《中国有色金属学会会刊:英文版》 EI CSCD 2007年第1期21-26,共6页
Alumina/zirconia composites were synthesized by wet-milling technique and rapid consolidation with high frequency induction heat sintering(HFIHS). The starting materials were a mixture of alumina micro-powder (80%, vo... Alumina/zirconia composites were synthesized by wet-milling technique and rapid consolidation with high frequency induction heat sintering(HFIHS). The starting materials were a mixture of alumina micro-powder (80%, volume fraction) and 3YSZ nano-powders (20%). The mixtures were optimized for good sintering behaviors and mechanical properties. Nano-crystalline grains are obtained after 24 h milling. The nano-structured powder compacts are then processed to full density at different temperatures by HFIHS. Effects of temperature on the mechanical and microstructure properties were studied. Al2O3-3YSZ composites with higher mechanical properties and small grain size are successfully developed at relatively low temperatures through this technique. 展开更多
关键词 生物陶瓷 烧结工艺 高频诱导 微观结构 机械性能
下载PDF
Development of Cd-doped Co Nanoparticles Encapsulated in Graphite Shell as Novel Electrode Material for the Capacitive Deionization Technology 被引量:3
2
作者 Nasser A.M.Barakat khalil abdelrazek khalil +1 位作者 Ahmad G.El-Deen Hak yong kim 《Nano-Micro Letters》 SCIE EI CAS 2013年第4期303-313,共11页
Because of the low energy requirement and the environmentally safe byproducts, the capacitive deionization water desalination technology has attracted the attention of many researchers. The important requirements for ... Because of the low energy requirement and the environmentally safe byproducts, the capacitive deionization water desalination technology has attracted the attention of many researchers. The important requirements for electrode materials are good electrical conductivity, high surface area, good chemical stability and high specific capacitance. In this study, metallic nanoparticles that are encapsulated in a graphite shell(Cd doped Co/C NPs) are introduced as the new electrode material for the capacitive deionization process because they have higher specific capacitance than the pristine carbonaceous materials. Cd doped Co/C NPs perform better than graphene and the activated carbon. The introduced nanoparticles were synthesized using a simple sol gel technique. A typical sol gel composed of cadmium acetate, cobalt acetate and poly(vinyl alcohol)was prepared based on the polycondensation property of the acetates. The physiochemical characterizations that were used confirmed that the drying, grinding and calcination in an Ar atmosphere of the prepared gel produced the Cd doped Co nanoparticles, which were encapsulated in a thin graphite layer. Overall, the present study suggests a new method to effectively use the encapsulated bimetallic nanostructures in the capacitive deionization technology. 展开更多
关键词 Capacitive deionization Water desalination Bimetallic nanoparticles Specific capacitance
下载PDF
Effective Modified Carbon Nanofibers as Electrodes for Capacitive Deionization Process 被引量:3
3
作者 Nasser A. M. Barakat Ahmed G. El-Deen khalil abdelrazek khalil 《Journal of Materials Science and Chemical Engineering》 2014年第1期38-42,共5页
Carbon materials have the advantages of good electrical conductivity and excellent chemical stability, so many carbon materials have been introduced as electrodes for the capacitive deionization (CDI) process. Due to ... Carbon materials have the advantages of good electrical conductivity and excellent chemical stability, so many carbon materials have been introduced as electrodes for the capacitive deionization (CDI) process. Due to the low surface area compared to the other nanocarbonaceous materials, CNFs performance as electrode in the CDI units is comparatively low. This problem has been overcome by preparing high surface area carbon nanofibers and by creating numerous long pores on the nanofibers surface. The modified CNFs have been synthesized using low cost, high yield and facile method;electrospinning technique. Stabilization and graphitization of electrospun nanofiber mats composed of polyacrylonitrile (PAN) and poly (methyl methacrylate) (PMMA) leads form longitudinal pores CNFs. The utilized characterizations indicated that the CNFs obtained from electrospun solution having 50% PMMA have surface area of 181 m2/g which are more than the conventional CNFs. Accordingly, these nanofibers revealed salt removal efficiency of ~90% and specific capacitance of 237 F/g. 展开更多
关键词 Capacitive DEIONIZATION CARBON NANOFIBERS ELECTROSPINNING Multi-Channels CNFs DESALINATION
下载PDF
Carbon Nanofibers Containing Ag/TiO<sub>2</sub>Composites as a Preliminary Stage for CDI Technology
4
作者 khalil abdelrazek khalil Hamoud Eltaleb +2 位作者 Hany S. Abdo Salem S. Al-Deyab H. Fouad 《Journal of Materials Science and Chemical Engineering》 2014年第1期31-37,共7页
Silver/titanium dioxide composite nanoparticles imbedded in polyacrylonitrile (PAN) nanofibers and converted into carbon nanofibers by stabilization and calcination was obtained and tested for capacitive deionization ... Silver/titanium dioxide composite nanoparticles imbedded in polyacrylonitrile (PAN) nanofibers and converted into carbon nanofibers by stabilization and calcination was obtained and tested for capacitive deionization technology. First, the silver ions were converted to metallic silver nanoparticles, through reduction of silver nitrate with dilute solution of PAN. Second, the TiO2 precursor (Titanium Isopropoxide) was added to the solution to form Ag/TiO2 composites imbedded in the PAN polymer solution. Last step involves electrospinning of viscous PAN solution containing silver/TiO2 nanoparticles, thus obtaining PAN nanofibers containing silver/TiO2 nanoparticles. Scanning electron microscopy (SEM) revealed that the diameter of the nanofibers ranged between 50 and 300 nm. Transmission electron microscopy (TEM) and energy dispersive spectroscopy (EDS) showed silver/TiO2 nanoparticles dispersed on the surface of the carbon nanofibers. The obtained fiber was fully characterized by measuring and comparing the FTIR spectra and thermogravimetric analysis (TGA) diagrams of PAN nanofiber with and without imbedded nanoparticles, in order to show the effect of silver/TiO2 nanoparticles on the electrospun fiber properties. 展开更多
关键词 POLYACRYLONITRILE (PAN) NANOFIBERS Carbon NANOFIBERS Electrospinning Silver/TiO2 Nanoparticles
下载PDF
Effect of Hydroxide Ion Concentration on the Morphology of the Hydroxyapatite Nanorods Synthesized Using Electrophoretic Deposition
5
作者 khalil abdelrazek khalil Abdulhakim A. Almajid Mahmoud S. Soliman 《Materials Sciences and Applications》 2011年第2期105-110,共6页
The effect of OH- concentration on the morphology of the hydroxyapatite (HA) nanorod synthesized using electrophoretic deposition (EPD) method has been investigated. The growth of HA nanorods was achieved on polished ... The effect of OH- concentration on the morphology of the hydroxyapatite (HA) nanorod synthesized using electrophoretic deposition (EPD) method has been investigated. The growth of HA nanorods was achieved on polished titanium substrates. The electrolyte used in this study was prepared by dissolving calcium acetate (Ca (CH3COO)2H)2O), and Ammonium dihydrogen phosphate (NH4H2PO4) in distilled water without any surfactant, and was maintained at 80-130°C. Two electrolytes with OH- concentration of 10-4 and 10-10 were prepared. A highly homogeneous HA nanorods deposited on the titanium substrates were obtained after 1 h in the electrolytes with higher OH- concentration of 10-4. On the other hand, a flower-shaped HA nanostructures composed of needle-like HA crystals were obtained in the electrolyte of lower OH- concentration of 10-10. The deposits were identified as HA crystal rods grown along the c axis and perpendicular to the substrate. The HA deposits were characterized by scanning electron microscopy (SEM) while detailed structural characterization was done using a transmission electron microscope (TEM) equipped with selected area electron diffraction (SAED) patterns. 展开更多
关键词 HYDROXYAPATITE NANORODS Flower-Shaped Electrophoretic DEPOSITION Synthesi
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部