The present study aims at environmental protection through the use of plastic wastes in the production of mortar. The behavior of siliceous sand-based mortars from Togo and binders of plastic bags of the kind “voltic...The present study aims at environmental protection through the use of plastic wastes in the production of mortar. The behavior of siliceous sand-based mortars from Togo and binders of plastic bags of the kind “voltic” is analyzed. Mortar samples from a mixture of siliceous sand and binder of plastic bags are prepared and subjected to physical and mechanical tests after immersion in the hydrocarbon from 0 hour to 504 hours. The result demonstrates that hydrocarbons have no influence on mechanical properties of mortars for an immersion time below 3 hours. Between 3 hours and 24 hours the presence of hydrocarbon increases their physical and mechanical properties. After 24 hours mortars generally lose the mechanical properties of around 8% to 24% due to the loss of viscosity and cohesiveness of the binder caused by the fuel. The behavior in the face of hydrocarbons shows that the material can be used in the surface of roads by carefully avoiding that hydrocarbons remain on the roads for a period of time beyond 24 hours.展开更多
The present study aims at helping to search for preventive solutions to pathologies of constructions in Togblécopé in Togo, by the reduction in the withdrawal and swelling of foundation grounds through their...The present study aims at helping to search for preventive solutions to pathologies of constructions in Togblécopé in Togo, by the reduction in the withdrawal and swelling of foundation grounds through their stabilization. Togblécopé’s clay taken from 1 m, 2 m and 3 m deep, and mixed with four binding materials (cement, sea sand, silty sand and lime). Tests of identification and free swelling with odometer are carried out on pure and stabilized materials. What emerges from these tests is that the limits of liquidity and plasticity are rising along with the rate of stabilizers while the index of plasticity is falling. Cement and lime cause a reduction in the index value of plasticity by almost 50%. The more the sand’s grain size, the more the reduction in the plasticity index. The swelling potential is reduced by 60% for cement and lime, 30% for sea sand and 20% for silty sand. The present study is a contribution to the reduction in deflations from 20% to 60% of some parts of constructions in order to limit cracks.展开更多
文摘The present study aims at environmental protection through the use of plastic wastes in the production of mortar. The behavior of siliceous sand-based mortars from Togo and binders of plastic bags of the kind “voltic” is analyzed. Mortar samples from a mixture of siliceous sand and binder of plastic bags are prepared and subjected to physical and mechanical tests after immersion in the hydrocarbon from 0 hour to 504 hours. The result demonstrates that hydrocarbons have no influence on mechanical properties of mortars for an immersion time below 3 hours. Between 3 hours and 24 hours the presence of hydrocarbon increases their physical and mechanical properties. After 24 hours mortars generally lose the mechanical properties of around 8% to 24% due to the loss of viscosity and cohesiveness of the binder caused by the fuel. The behavior in the face of hydrocarbons shows that the material can be used in the surface of roads by carefully avoiding that hydrocarbons remain on the roads for a period of time beyond 24 hours.
文摘The present study aims at helping to search for preventive solutions to pathologies of constructions in Togblécopé in Togo, by the reduction in the withdrawal and swelling of foundation grounds through their stabilization. Togblécopé’s clay taken from 1 m, 2 m and 3 m deep, and mixed with four binding materials (cement, sea sand, silty sand and lime). Tests of identification and free swelling with odometer are carried out on pure and stabilized materials. What emerges from these tests is that the limits of liquidity and plasticity are rising along with the rate of stabilizers while the index of plasticity is falling. Cement and lime cause a reduction in the index value of plasticity by almost 50%. The more the sand’s grain size, the more the reduction in the plasticity index. The swelling potential is reduced by 60% for cement and lime, 30% for sea sand and 20% for silty sand. The present study is a contribution to the reduction in deflations from 20% to 60% of some parts of constructions in order to limit cracks.