This work is interested in solving the complex problem of understanding mass transfers in biological media. The contribution of the initial sample size is taken into account. Transfers are established more efficiently...This work is interested in solving the complex problem of understanding mass transfers in biological media. The contribution of the initial sample size is taken into account. Transfers are established more efficiently in small samples. Thus, from the first 50 minutes, the cubic sample at 1 cm stop is already at 50% while the sample at 4 cm edge is at about 90% of its initial water content. Likewise the shape is combined with the size. But it is revealed that if we fix similar characteristic dimensions, we can bypass the notion of initial shape. Thus the cubic samples 4 cm of edges. 4 cm diameter of spherical shape, 4 cm × 4 cm height-diameter cylindrical one, all dry identically.展开更多
In this paper the influence of sample initial size on their convective drying at 80°C using convective dryer is determined. Results prove that initial size must be taken into account when drying process was estim...In this paper the influence of sample initial size on their convective drying at 80°C using convective dryer is determined. Results prove that initial size must be taken into account when drying process was estimated. This influence is limited by its form of cut. Comparing cubic form and parallelepiped (slice) one;results seem to show that thickness is the most important parameter governing the transfer phenomena during foodstuff convective drying. Three slices with thickness of 0.5 cm and surface area of 17, 82 and 112 cm2 respectively, dry better than cubic sample with a = 1 cm or a = 2 cm of arrest and having respectively 6 and 24 cm2 of surface area. All things seem to show that initial surface is not only the essential parameter;but also the thickness of the sample must be taken into account. Indeed, all of the samples with equal thickness (0.5 cm) and different exchange surfaces dry at the same time, about 210 min, comparing with cubic form 1 cm of arrest and 6 cm2 of surface and drying time of 230 min. A new parameter noted Dc called characteristic diameter is so considered to bridge the gaps. It is defined to be the diameter of the biggest sphere we can cut into a sample. This parameter is independent of form of the sample, and time increase with characteristic diameter increasing.展开更多
文摘This work is interested in solving the complex problem of understanding mass transfers in biological media. The contribution of the initial sample size is taken into account. Transfers are established more efficiently in small samples. Thus, from the first 50 minutes, the cubic sample at 1 cm stop is already at 50% while the sample at 4 cm edge is at about 90% of its initial water content. Likewise the shape is combined with the size. But it is revealed that if we fix similar characteristic dimensions, we can bypass the notion of initial shape. Thus the cubic samples 4 cm of edges. 4 cm diameter of spherical shape, 4 cm × 4 cm height-diameter cylindrical one, all dry identically.
文摘In this paper the influence of sample initial size on their convective drying at 80°C using convective dryer is determined. Results prove that initial size must be taken into account when drying process was estimated. This influence is limited by its form of cut. Comparing cubic form and parallelepiped (slice) one;results seem to show that thickness is the most important parameter governing the transfer phenomena during foodstuff convective drying. Three slices with thickness of 0.5 cm and surface area of 17, 82 and 112 cm2 respectively, dry better than cubic sample with a = 1 cm or a = 2 cm of arrest and having respectively 6 and 24 cm2 of surface area. All things seem to show that initial surface is not only the essential parameter;but also the thickness of the sample must be taken into account. Indeed, all of the samples with equal thickness (0.5 cm) and different exchange surfaces dry at the same time, about 210 min, comparing with cubic form 1 cm of arrest and 6 cm2 of surface and drying time of 230 min. A new parameter noted Dc called characteristic diameter is so considered to bridge the gaps. It is defined to be the diameter of the biggest sphere we can cut into a sample. This parameter is independent of form of the sample, and time increase with characteristic diameter increasing.