The alpine treeline ecotone is an important component of mountain ecosystems of the Nepal Himalaya; it plays a vital role in the livelihood of indigenous people,and provides ecosystem services. However,the region face...The alpine treeline ecotone is an important component of mountain ecosystems of the Nepal Himalaya; it plays a vital role in the livelihood of indigenous people,and provides ecosystem services. However,the region faces a problem of paucity of data on treeline characteristics at the regional and landscape scales. Therefore,we used Remote Sensing(RS),and Geographic Information Science(GIS) approaches to investigate cross-scale interactions in the treeline ecotone. Additionally,European Space Agency land cover map,International Center for Integrated Mountain Development(ICIMOD) land cover map,ecological map of Nepal,and United States Geological Survey Shuttle Radar Topography Mission-Digital Elevation Model were used to analyze treeline pattern at the regional scale. Digital Globe high-resolution satellite imagery of Barun(eastern Nepal) and Manang(central Nepal) were used to study treeline patterns at the landscape scale. Treeline elevation ranges from 3300-4300 m above sea level. Abies spectabilis,Betula utilis,and Pinus wallichiana are the main treeline-forming species in the Nepal Himalaya. There is an east to west treeline elevationgradient at the regional scale. No slope exposure is observed at the regional scale; however,at the landscape scale,slope exposure is present only in a disturbed area(Manang). Topography and human disturbance are the main treeline controlling factor in Barun and Manang respectively.展开更多
Stand structure dynamics are considered as major happenings in any forest as a response to environmental changes.However,this important topic is underrepresented in the treeline studies in the Nepal Himalayas.We aimed...Stand structure dynamics are considered as major happenings in any forest as a response to environmental changes.However,this important topic is underrepresented in the treeline studies in the Nepal Himalayas.We aimed to investigate site-as well as species-specific changes in morphometric features(basal diameter,crown cover,density,and height)along the elevational gradient across treeline ecotones in response to recent environmental changes.The stand structure characteristics of Abies spectabilis,Pinus wallichiana,and Betula utilis across the treeline ecotone of three study sites in Eastern(Barun),Central(Manang),and Western(Dhorpatan)Nepal were analyzed to elucidate structural heterogeneities.Altogether,eight transects(20 m×(60–250 m))across the treeline ecotone were established.Trees of all life forms,trees(>2 m),saplings(0.5–2 m),and seedlings(<0.5 m),within each transect were enumerated and sampled for the morphometric features and age.Site-specific and species-specific stand structure dynamics were found.The rate of basal area increment was higher in Barun,but the Manang treeline,despite profound regeneration in recent years,had a low annual basal area increment.Moreover,the altitudinal distribution of age and morphometry were not consistent among those ecotones.Furthermore,intra-specific competition was not significant.The site-specific stand structure dynamics explain why treelines do not respond uniformly to increasing temperature.It invokes,in further studies,the incorporation of the tree’s morphometric adaptation traits,phenotypic plasticity,and interactions between species genotype and the environment.展开更多
Aims We investigated the treeline dynamics of two environmentally con-trasting areas in the Nepalese Himalaya to address the following questions:(i)Does the timing of establishment of the current tree-line differ betw...Aims We investigated the treeline dynamics of two environmentally con-trasting areas in the Nepalese Himalaya to address the following questions:(i)Does the timing of establishment of the current tree-line differ between the two study areas,and can area-specific tree-line developments be identified?(ii)Do recruitment patterns and height growth indicate recent climate-driven treeline advance,fol-lowing the general prediction for the central Himalayan region,in the two study areas?Methods a dry-climate treeline dominated by Pinus wallichiana and a mesic-climate treeline with Abies spectabilis were selected for study.In each area,we sampled the size and age structure of the study spe-cies along three elevational transects(20-m wide)from the forest line to the tree species line crossing the treeline.We also sampled treeline trees from within and outside transects to reconstruct past treeline establishment dynamics.Important Findings Despite differences in moisture regimes,tree species and recent climate trends,our two study areas showed very similar treeline dynamics over the past six decades.In both areas,the recruitment of treeline trees indicates stationary treelines over the past six decades with the current treelines being dominated by trees that were established around 1990.the mesic area has experienced an overall climatic warming trend,and the stationary Abies treeline is hypothesized to be regulated by non-climatic factors,notably grazing.the dry area has not experienced warming but increased climatic variability and some very cool summers in the recent dec-ades may explain the stationary to weakly receding Pinus treeline,which appears more climatically controlled with decreased recruit-ment over the past decades and decreased growth towards higher elevations.In both areas,there is a potential for treeline advance,depending on future land use and climate change.our results highlight the importance of conducting treeline ecotone analyses for several sites or areas,and considering both climatic and non-climatic drivers of the treeline dynamics within each of these areas,for understanding regional treeline dynamics.展开更多
文摘The alpine treeline ecotone is an important component of mountain ecosystems of the Nepal Himalaya; it plays a vital role in the livelihood of indigenous people,and provides ecosystem services. However,the region faces a problem of paucity of data on treeline characteristics at the regional and landscape scales. Therefore,we used Remote Sensing(RS),and Geographic Information Science(GIS) approaches to investigate cross-scale interactions in the treeline ecotone. Additionally,European Space Agency land cover map,International Center for Integrated Mountain Development(ICIMOD) land cover map,ecological map of Nepal,and United States Geological Survey Shuttle Radar Topography Mission-Digital Elevation Model were used to analyze treeline pattern at the regional scale. Digital Globe high-resolution satellite imagery of Barun(eastern Nepal) and Manang(central Nepal) were used to study treeline patterns at the landscape scale. Treeline elevation ranges from 3300-4300 m above sea level. Abies spectabilis,Betula utilis,and Pinus wallichiana are the main treeline-forming species in the Nepal Himalaya. There is an east to west treeline elevationgradient at the regional scale. No slope exposure is observed at the regional scale; however,at the landscape scale,slope exposure is present only in a disturbed area(Manang). Topography and human disturbance are the main treeline controlling factor in Barun and Manang respectively.
文摘Stand structure dynamics are considered as major happenings in any forest as a response to environmental changes.However,this important topic is underrepresented in the treeline studies in the Nepal Himalayas.We aimed to investigate site-as well as species-specific changes in morphometric features(basal diameter,crown cover,density,and height)along the elevational gradient across treeline ecotones in response to recent environmental changes.The stand structure characteristics of Abies spectabilis,Pinus wallichiana,and Betula utilis across the treeline ecotone of three study sites in Eastern(Barun),Central(Manang),and Western(Dhorpatan)Nepal were analyzed to elucidate structural heterogeneities.Altogether,eight transects(20 m×(60–250 m))across the treeline ecotone were established.Trees of all life forms,trees(>2 m),saplings(0.5–2 m),and seedlings(<0.5 m),within each transect were enumerated and sampled for the morphometric features and age.Site-specific and species-specific stand structure dynamics were found.The rate of basal area increment was higher in Barun,but the Manang treeline,despite profound regeneration in recent years,had a low annual basal area increment.Moreover,the altitudinal distribution of age and morphometry were not consistent among those ecotones.Furthermore,intra-specific competition was not significant.The site-specific stand structure dynamics explain why treelines do not respond uniformly to increasing temperature.It invokes,in further studies,the incorporation of the tree’s morphometric adaptation traits,phenotypic plasticity,and interactions between species genotype and the environment.
基金Research Council of Norway under the project HimaLines(190153/V10)RCN funds to A.H.under the‘The PPS Arctic project’,Grolle Olsen fund and University fund from Faculty of Mathematics and Natural Science at the University of Bergen supported for the field.
文摘Aims We investigated the treeline dynamics of two environmentally con-trasting areas in the Nepalese Himalaya to address the following questions:(i)Does the timing of establishment of the current tree-line differ between the two study areas,and can area-specific tree-line developments be identified?(ii)Do recruitment patterns and height growth indicate recent climate-driven treeline advance,fol-lowing the general prediction for the central Himalayan region,in the two study areas?Methods a dry-climate treeline dominated by Pinus wallichiana and a mesic-climate treeline with Abies spectabilis were selected for study.In each area,we sampled the size and age structure of the study spe-cies along three elevational transects(20-m wide)from the forest line to the tree species line crossing the treeline.We also sampled treeline trees from within and outside transects to reconstruct past treeline establishment dynamics.Important Findings Despite differences in moisture regimes,tree species and recent climate trends,our two study areas showed very similar treeline dynamics over the past six decades.In both areas,the recruitment of treeline trees indicates stationary treelines over the past six decades with the current treelines being dominated by trees that were established around 1990.the mesic area has experienced an overall climatic warming trend,and the stationary Abies treeline is hypothesized to be regulated by non-climatic factors,notably grazing.the dry area has not experienced warming but increased climatic variability and some very cool summers in the recent dec-ades may explain the stationary to weakly receding Pinus treeline,which appears more climatically controlled with decreased recruit-ment over the past decades and decreased growth towards higher elevations.In both areas,there is a potential for treeline advance,depending on future land use and climate change.our results highlight the importance of conducting treeline ecotone analyses for several sites or areas,and considering both climatic and non-climatic drivers of the treeline dynamics within each of these areas,for understanding regional treeline dynamics.