期刊文献+
共找到11篇文章
< 1 >
每页显示 20 50 100
Spectral Discrimination of Two Pigweeds from Cotton with Different Leaf Colors 被引量:2
1
作者 Reginald S. Fletcher krishna n. reddy Rickie B. Turley 《American Journal of Plant Sciences》 2016年第15期2138-2150,共13页
To implement strategies to control Palmer amaranth (Amaranthus palmeri S. Wats.) and redroot pigweed (Amaranthus retroflexus L.) infestations in cotton (Gossypium hirsutum L.) production systems, managers need effecti... To implement strategies to control Palmer amaranth (Amaranthus palmeri S. Wats.) and redroot pigweed (Amaranthus retroflexus L.) infestations in cotton (Gossypium hirsutum L.) production systems, managers need effective techniques to identify the weeds. Leaf light reflectance measurements have shown promise as a tool to distinguish crops from weeds. Studies have targeted plants with green leaves. This study focused on using leaf hyperspectral reflectance data to develop spectral profiles of Palmer amaranth, redroot pigweed, and cotton and to determine regions of the light spectrum most sensitive for pigweed and cotton discrimination. The study focused on cotton near-isogenic lines created to have bronze, green, or yellow colored leaves. Reflectance measurements within the 400 to 2500 nm spectral range were obtained from cotton and weed plants grown in a greenhouse in 2015 and 2016. Two scenarios were evaluated for the comparison: (1) Palmer amaranth versus cotton lines and (2) redroot pigweed versus cotton lines. Statistical significance (p ≤ 0.05) was determined with analysis of variance (ANOVA) and Dunnett’s test. Sensitivity measurements were tabulated to determine the optimal region of the light spectrum for weed and cotton line discrimination. Optimal bands for weed and cotton separation were 600 to 700 nm (both weeds versus cotton bronze and cotton yellow), 710 nm (Palmer amaranth versus cotton green), and 1460 nm (redroot pigweed versus cotton green). Spectral bands were identified for separating Palmer amaranth and redroot pigweed from cotton lines with bronze, green, and yellow leaves. Ground-based and airborne sensors can be tuned into the regions of spectrum identified, facilitating using remote sensing technology for Palmer amaranth and redroot pigweed identification in cotton production systems. 展开更多
关键词 Pigweeds Cotton Near-Isogenic Lines Leaf Reflectance
下载PDF
Irrigation Methods and Scheduling in the Delta Region of Mississippi: Current Status and Strategies to Improve Irrigation Efficiency 被引量:2
2
作者 Hirut Kebede Daniel K. Fisher +1 位作者 Ruixiu Sui krishna n. reddy 《American Journal of Plant Sciences》 2014年第20期2917-2928,共12页
Even though annual rainfall is high in the Delta region of Mississippi, only 30% occurs during the months in which the major crops are produced, making irrigation often necessary to meet crop water needs and to avoid ... Even though annual rainfall is high in the Delta region of Mississippi, only 30% occurs during the months in which the major crops are produced, making irrigation often necessary to meet crop water needs and to avoid risk of yield and profitability loss. Approximately, 65% of the farmland in this region is irrigated. The shallow Mississippi River Valley Alluvial Aquifer is the major source of water for irrigation and for aquaculture in the predominant catfish industry. This groundwater is being heavily used as row-crop irrigation has increased tremendously. Water level in this aquifer has declined significantly over the past twenty five years, with overdraft of approximately 370 million cubic meters of water per year. Moreover, the common irrigation practices in the Delta re-gion of Mississippi do not use water efficiently, further depleting the ground water and making ir-rigation more expensive to producers due to increasing energy prices. Irrigation experts in the re-gion have tested and verified various methods and tools that increase irrigation efficiency. This article presents a review of the current status of the irrigation practices in the Delta region of Mis-sissippi, and the improved methods and tools that are available to increase irrigation efficiency and to reduce energy costs for producers in the region as well as to stop the overdraft of the declining aquifer, ensuring its sustainable use. 展开更多
关键词 The DELTA REGION of MISSISSIPPI IRRIGATION Efficiency IRRIGATION SCHEDULING FURROW IRRIGATION Crop Water Use
下载PDF
Influence of Planting Date on Seed Protein, Oil, Sugars, Minerals, and Nitrogen Metabolism in Soybean under Irrigated and Non-Irrigated Environments 被引量:2
3
作者 nacer Bellaloui krishna n. reddy +2 位作者 Anne M. Gillen Daniel K. Fisher Alemu Mengistu 《American Journal of Plant Sciences》 2011年第5期702-715,共14页
Information on the effect of planting date and irrigation on soybean [Glycine max (L.) Merr.] seed composition in the Early Soybean Production System (ESPS) is deficient, and what is available is inconclusive. The obj... Information on the effect of planting date and irrigation on soybean [Glycine max (L.) Merr.] seed composition in the Early Soybean Production System (ESPS) is deficient, and what is available is inconclusive. The objective of this research was to investigate the effects of planting date on seed protein, oil, fatty acids, sugars, and minerals in soybean grown under irrigated (I) and non-irrigated (NI) conditions. A 2-yr field experiment was conducted in Stoneville, MS in 2007 and 2008. Soybean was planted during second week of April (early planting) and second week of May (late planting) each year. Results showed that under irrigated condition, early planting increased seed oil (up to 16% increase) and oleic acid (up to 22.8% increase), but decreased protein (up to 6.6% decrease), linoleic (up to 10.9% decrease) and linolenic acids (up to 27.7% decrease) compared to late planting. Under I conditions, late planting resulted in higher sucrose and raffinose and lower stachyose compared with early planting. Under NI conditions, seed of early planting had higher protein (up to 4% increase) and oleic acid (up to 25% increase) and lower oil (up to10.8% decrease) and linolenic acids (up to 13% decrease) than those of late planting. Under NI, stachyose concentration was higher than sucrose or raffinose, especially in early planting. Under I, early planting resulted in lower leaf and seed B, Fe, and P concentrations compared with those of late planting. Under NI, however, early planting resulted in higher accumulation of leaf B and P, but lower seed B and P compared with those of late planting. This research demonstrated that both irrigation and planting date have a significant influence on seed protein, oil, unsaturated fatty acids, and sugars. Our results suggest that seed of late planting accumulate more B, P, and Fe than those of early planting, and this could be a beneficial gain. Limited translocation of nutrients from leaves to seed under NI is undesirable. Soybean producers may use this information to maintain yield and seed quality, and soybean breeders to select for seed quality traits and mineral translocation efficiency in stress environments. 展开更多
关键词 Mineral Nutrition OLIGOSACCHARIDES RAFFINOSE STACHYOSE Seed Composition SUCROSE
下载PDF
Hyperspectral Imaging for Differentiating Glyphosate-Resistant and Glyphosate-Susceptible Italian Ryegrass 被引量:1
4
作者 Yanbo Huang Matthew A. Lee +1 位作者 Vijay K. nandula krishna n. reddy 《American Journal of Plant Sciences》 2018年第7期1467-1477,共11页
Glyphosate is widely used in row crop weed control programs of glyphosate-resistant (GR) crops. With the accumulation of glyphosate use, several weeds have evolved resistance to glyphosate. In order to control GR weed... Glyphosate is widely used in row crop weed control programs of glyphosate-resistant (GR) crops. With the accumulation of glyphosate use, several weeds have evolved resistance to glyphosate. In order to control GR weeds for profitable crop production, it is critical to first identify them in crop fields. Conventional method for identifying GR weeds is destructive, tedious and labor-intensive. This study developed hyperspectral imaging for rapid sensing of Italian ryegrass (Lolium perenne ssp. multiflorum) plants to determine if each plant is GR or glyphosate-susceptible (GS). In image analysis, a set of sensitive spectral bands was determined using a forward selection algorithm by optimizing the area under the receiver operating characteristic between GR and GS plants. Then, the dimensionality of selected bands was reduced using linear discriminant analysis. At the end the maximum likelihood classification was conducted for plant sample differentiation of GR Italian ryegrass from GS ones. The results indicated that the overall classification accuracy is between 75% and 80%. Although the accuracy is lower than the classification of Palmer amaranth (Amaranthus palmeri S. Wats.) in our previous study, this study provides a rapid, non-destructive approach to differentiate between GR and GS Italian ryegrass for improved site-specific weed management. 展开更多
关键词 Hyperspectral Imaging GLYPHOSATE Resistance ITALIAN RYEGRASS
下载PDF
Soybean seed protein, oil, and fatty acids are altered by S and S + N fertilizers under irrigated or non-irrigated environments 被引量:1
5
作者 nacer Bellaloui M. Wayne Ebelhar +5 位作者 Anne M. Gillen Daniel K. Fisher Hamed K. Abbas Alemu Mengistu krishna n. reddy Robert L. Paris 《Agricultural Sciences》 2011年第4期465-476,共12页
Information on the effect of sulfur (S) or sulfur+nitrogen (S + N) on soybean seed composition is scarce. Thus, the objective of this study was to investigate the effects of S, and S + N fertilizers on soybean [(Glyci... Information on the effect of sulfur (S) or sulfur+nitrogen (S + N) on soybean seed composition is scarce. Thus, the objective of this study was to investigate the effects of S, and S + N fertilizers on soybean [(Glycine max (L.) Merr.)] seed composition in the Early Soybean Production System (ESPS) under irrigated (I) and nonirrigated (NI) environments. Two separate field experiments were conducted from 2005 to 2007. One experiment was irrigated, and the second experiment was nonirrigated. Under I condition, S at a rate of 44.8 kg/ha alone or with N at 112 kg/ha resulted in a consistent increase in seed protein and oleic acid concentrations, and a decrease in oil and linolenic acid concentrations compared with the control (C). For example, in 2006 and compared with the C, application of S + N increased the percentage up to 11.4% and 48.5% for protein and oleic acid, respectively. However, oil concentration decreased by 3%. Protein and oleic acid increase were accompanied by a higher percentage of leaf and seed N and S. Under NI conditions, seed protein and oleic acid concentrations were significantly higher in C than in any S or S + N treatments, but the oil and linolenic acid concentrations were significantly lower. The results indicate that specific rate of S alone or S + N combined can alter seed composition under irrigated or nonirrigated conditions. This knowledge may help plant breeders to develop and release cultivars to suit specific target locations to grow new value-added soybeans or select for specific seed composition traits under specific environmental stress factors such as drought. 展开更多
关键词 FATTY ACIDS Nutrition OIL Protein Seed Composition SOYBEAN
下载PDF
Soybean Seed Protein, Oil, Fatty Acids, and Isoflavones Altered by Potassium Fertilizer Rates in the Midsouth
6
作者 nacer Bellaloui Xinhua Yin +3 位作者 Alemu Mengistu Angela M. McClure Don D. Tyler krishna n. reddy 《American Journal of Plant Sciences》 2013年第5期976-988,共13页
Previous research has shown that the effect of potassium fertilizer on soybean ([Glycine max (L.) Merr.] seed composition (protein, oil, fatty acids, and isoflavones) is still largely unknown. Therefore, the objective... Previous research has shown that the effect of potassium fertilizer on soybean ([Glycine max (L.) Merr.] seed composition (protein, oil, fatty acids, and isoflavones) is still largely unknown. Therefore, the objective of this research was to investigate the effects of potassium application on seed protein, oil, fatty acids, and isoflavones under Midsouth environmental conditions. A three-year experiment was conducted in two locations (Milan, TN and Jackson, TN). Potassium (K) rates were applied in the form of K2O at a rate of 0 (Control, C), 45 (T1), 90 (T2), 134 (T3), and 179 (T4) kg·ha-1 in a randomized complete block design. The results showed that increasing the K application rate did not result in consistent effects on yield. However, increasing K application rate did increase protein, oleic acid, and individual and total isoflavone concentrations at both locations in 2008 and 2009. In Jackson in 2010, the increase of K rate did not change oleic acid, but resulted in an increase in glycitein and genistein isoflavone concentrations. In 2010, increasing K application rate increased protein concentrations, decreased individual and total isoflavones, and did not change oleic acid concentration at Milan. At the highest rate of K, 179 kg·ha-1, yield and some seed composition constituents were negatively impacted. Generally, K concentration in leaves at V5, R1, R3, and seed at harvest maturity stage (R8) increased with the increase of K rate applications. The research demonstrated that K application can alter seed composition, but this alteration depended on location, environmental stress factors, mainly heat and drought, K level in soil, and K application rate. Higher rates of K application may negatively impact seed composition constituents. 展开更多
关键词 FATTY Acids ISOFLAVONES OIL Oleic Acid POTASSIUM FERTILIZER Protein Seed Composition
下载PDF
Late-Season Grass Weed Management with In-Crop and Post-Harvest Herbicides in Twin-Row Glyphosate-Resistant Soybean
7
作者 krishna n. reddy Charles T. Bryson Vijay K. nandula 《American Journal of Plant Sciences》 2015年第1期213-218,共6页
Emergence of grasses late in the season has become a problem in glyphosate-resistant (GR) soybean production in the southern US. A 3-yr field study was conducted from 2011 to 2013 at Stoneville, MS to determine effica... Emergence of grasses late in the season has become a problem in glyphosate-resistant (GR) soybean production in the southern US. A 3-yr field study was conducted from 2011 to 2013 at Stoneville, MS to determine efficacy of post-harvest and pyroxasulfone-based in-crop herbicides on late-season grasses and yield in twin-row glyphosate-resistant soybean. Experiments were conducted in a split-plot arrangement of treatments in a randomized complete block design with fall herbicides (with and without pendimethalin at 1.12 kg ai ha-1 and paraquatat 0.84 kg ai ha-1) as main plots and in-crop herbicides as subplots with four replications. The six in-crop herbicide programs were: glyphosate applied early postemergence (EPOST) at 0.84 kg·aeha-1 followed by (fb) glyphosate late postemergence (LPOST) at 0.84 kg·ha-1 with and without pyroxasulfone preemergence (PRE) applied at 0.18 kg ai ha-1, pyroxasulfone PRE fb glyphosate at 0.84 kg·ha-1 LPOST or glyphosate at 0.84 kg·ha-1 + S-metolachlor at 1.68 kg ai ha-1 EPOST, pyroxasulfone PRE fb S-meto- lachlor at 1.12 kg·ha-1 + fomesafen at 0.27 kg ai ha-1 EPOST fb clethodim at 0.14 kg ai ha-1, and a no-herbicide control. Browntop millet, Digitaria spp., and junglerice densities at 2 weeks after LPOST, grass weed dry biomass at harvest, and soybean yield were similar regardless of post- harvest herbicides in all three years. At 2 weeks after LPOST, browntop millet, Digitaria spp. and junglerice densities were greatly reduced in all five in-crop herbicide treatments compared with no herbicide plot in all three years. Grass weed dry biomass in no-herbicide plots was 3346, 6136, and 6916 kg·ha-1 in 2011, 2012, and 2013, respectively and the five herbicide treatments reduced grass weed dry biomass by at least 87%, 84%, and 99% in 2011, 2012, and 2013, respectively. Soybean yield was higher with all five in-crop herbicide treatments compared to no herbicide control in all three years. These results indicate that browntop millet, Digitaria spp., and junglerice infestations can be reduced with pyroxasulfone-based in-crop herbicide programs in twin-row GR soybean. 展开更多
关键词 Browntop MILLET Digitaria spp. Junglerice S-METOLACHLOR Pyroxasulfone Soybean Twin-Row
下载PDF
Corn and Soybean Rotation under Reduced Tillage Management: Impacts on Soil Properties, Yield, and Net Return
8
作者 krishna n. reddy Robert M. Zablotowicz L. Jason Krutz 《American Journal of Plant Sciences》 2013年第5期10-17,共8页
A 4-yr field study was conducted from 2007 to 2010 at Stoneville, MS to examine the effects of rotating corn and soybean under reduced tillage conditions on soil properties, yields, and net return. The six rotation sy... A 4-yr field study was conducted from 2007 to 2010 at Stoneville, MS to examine the effects of rotating corn and soybean under reduced tillage conditions on soil properties, yields, and net return. The six rotation systems were continuous corn (CCCC), continuous soybean (SSSS), corn-soybean (CSCS), soybean-corn (SCSC), soybean-soybean-cornsoybean (SSCS), and soybean-soybean-soybean-corn (SSSC). Field preparation consisted of disking, subsoiling, disking, and bedding in the fall of 2005. After the fall of 2006, the raised beds were refurbished each fall after harvest with no additional tillage operations to maintain as reduced tillage system. The surface 5 cm soil from continuous soybean had higher pH than continuous corn in all four years. Unlike pH, total carbon and total nitrogen were higher in continuous corn compared to continuous soybean. Delta 15N tended to be higher in continuous corn compared to continuous soybean. Fatty acid methyl ester (FAME) indicated minor changes in soil microbial community in relation to cropping sequence, however there was a significant shift in rhizosphere community depending on crop. Corn yield increased every year following rotation with soybean by 16%, 31%, and 15% in 2008, 2009, and 2010, respectively, compared to continuous corn. As a result, net returns were higher in rotated corn compared with continuous corn. This study demonstrated that alternating between corn and soybean is a sustainable practice with increased net returns in corn. 展开更多
关键词 Crop ROTATION MONOCULTURE Reduced TILLAGE SOIL Microbial Community SOIL Quality
下载PDF
Glyphosate Resistance in Giant Ragweed (<i>Ambrosia trifida</i>L.) from Mississippi Is Partly Due to Reduced Translocation
9
作者 Vijay K. nandula Alice A. Wright +3 位作者 Christopher R. Van Horn William T. Molin Phil Westra krishna n. reddy 《American Journal of Plant Sciences》 2015年第13期2104-2113,共10页
A giant ragweed population from a glyphosate-resistant (GR) soybean field in Mississippi, USA was suspected to be resistant to glyphosate. Greenhouse and laboratory studies were conducted to confirm and quantify the m... A giant ragweed population from a glyphosate-resistant (GR) soybean field in Mississippi, USA was suspected to be resistant to glyphosate. Greenhouse and laboratory studies were conducted to confirm and quantify the magnitude of glyphosate resistance in a resistant biotype selected from this population and to elucidate possible physiological and molecular mechanisms of glyphosate resistance. Glyphosate dose response studies indicated that ED50 (effective dose required to reduce plant growth by 50%) values for glyphosate-resistant (GR-MS) and glyphosate-susceptible (GS-MS) biotypes, based on percent injury, were 0.52 and 0.34 kg ae/ha glyphosate, respectively, indicating a 1.5-fold level of resistance in GR-MS. The absorption pattern of 14C-glyphosate in the two giant ragweed biotypes was similar throughout the measured time course of 168 h after treatment (HAT). The amount of 14C-glyphosate that translocated out of treated leaves of the GR-MS and GS-MS plants was similar up to 24 HAT. However, the GS-MS biotype translocated more (71% and 76% of absorbed at 48 and 96 HAT, respectively) 14C-glyphosate than the GR-MS biotype (44% and 66% of absorbed at 48 and 96 HAT, respectively) out of the treated leaf. No target site mutation was identified at the Pro106 location of the EPSPS gene of the GR-MS biotype. The mechanism of resistance to glyphosate in giant ragweed from Mississippi, at least, is due to reduced glyphosate translocation. 展开更多
关键词 Absorption EPSPS GIANT RAGWEED Glyphosate Herbicide Resistance TRANSLOCATION
下载PDF
Morpho-Physiological Characterization of Glyphosate-Resistant and -Susceptible Horseweed (Conyza canadensis) Biotypes of US Midsouth
10
作者 Vijay K. nandula Daniel H. Poston +2 位作者 Clifford H. Koger krishna n. reddy K. Raja reddy 《American Journal of Plant Sciences》 2015年第1期47-56,共10页
Horseweed is traditionally considered a non-cropland weed. However, populations resistant to glyphosate have eventually become established in no-till agronomic cropping systems. Growth chamber and greenhouse experimen... Horseweed is traditionally considered a non-cropland weed. However, populations resistant to glyphosate have eventually become established in no-till agronomic cropping systems. Growth chamber and greenhouse experiments were conducted to compare selected biological and physiological parameters of glyphosate-resistant (GR) and -susceptible (GS) horseweed biotypes from Mississippi with a broader goal of fitness characterization in these biotypes. Vegetative growth parameters (number of leaves, rosette diameter and area, shoot and root fresh weights) were recorded weekly from 5 to 11 wk after emergence and reproductive attributes [days to bolting (production of a flowering stalk) and flowering] and senescence were measured for both GR and GS biotypes under high (24°C/20°C) and low (18°C/12°C) temperature regimes, both with a 13-h light period. Physiological traits such as net photosynthesis, phenolic content, and cell membrane thermostability, all in the presence and absence of glyphosate, and leaf content of divalent cations such as Ca2+ and Mg2+ were assayed in the two biotypes under the high temperature regime. All horseweed vegetative growth parameters except root fresh weight were higher in the high temperature regime compared to that in low temperature regime in both biotypes. Number of leaves, rosette diameter and area, shoot and root fresh weight were 40 vs. 35, 9.3 vs. 8.7 cm, 51 vs. 43 cm2, 3.7 vs. 3.2 g, and 3.5 vs. 4.2 g under high and low temperature conditions, respectively, when averaged across biotypes and weekly measurements. All growth parameters listed above were higher for the GR biotype compared to the GS biotype. Number of leaves, rosette diameter and area, shoot and root fresh weight were 38 vs. 37, 9.1 vs. 8.9 cm, 50.2 vs. 44 cm2, 3.9 vs. 3.1 g, and 4.3 vs. 3.5 g for GR and GS biotypes, respectively, averaged across the temperature treatments and weekly measurements. Reproductive developmental data of these biotypes indicated that the GS biotype bolted earlier than the GR biotype. The GS biotype had more phenolic content and exhibited higher cell membrane thermostability, but less net photosynthetic rate compared to the GR biotype. At 48 h after treatment with glyphosate, there was no change in phenolic content of both GR and GS biotypes. However, glyphosate reduced cell membrane thermostability and net photosynthetic rate more in the GS biotype than that in the GR biotype. Chemical analysis of GR and GS leaf tissue did not reveal any differences in levels of divalent cations such as Ca2+ and Mg2+. Further studies are needed to determine if some of the differences between the two biotypes observed above relate to fitness variation in a natural environment. 展开更多
关键词 Conyza CANADENSIS GLYPHOSATE Growth FITNESS Horseweed Resistance
下载PDF
Corn Yield Response to Reduced Water Use at Different Growth Stages
11
作者 Hirut Kebede Ruixiu Sui +3 位作者 Daniel K. Fisher krishna n. reddy nacer Bellaloui William T. Molin 《Agricultural Sciences》 2014年第13期1305-1315,共11页
To develop an efficient water use strategy for crop irrigation, we need to know how much water can be reduced without decreasing yield. A study was designed to determine corn growth stages at which water could be redu... To develop an efficient water use strategy for crop irrigation, we need to know how much water can be reduced without decreasing yield. A study was designed to determine corn growth stages at which water could be reduced without affecting grain yield, and at what soil moisture level water deficit stress begins in the plants in a silt loam soil. An experiment was conducted in a randomized complete block with a 3 × 4 factorial design in four replications, where treatments consisted of three soil moisture levels [100%, 75%, and 50% of field capacity (FC) of a silt loam soil by weight] and four growth stages [fourteen leaf stage (V14), silking (R1), milk (R3), and dent (R5) stages] in a greenhouse. Growth stages at the reproductive and grain fill stages of corn were selected because this study was intended for the Mississippi Delta, where there is frequent drought during these growth stages making irrigation necessary for corn production, whereas there is usually adequate rainfall during the vegetative growth stages. Results from this study showed that reducing soil moisture from 100% FC (fully irrigated) to 75% FC of a silt loam soil starting at the R1 growth stage in corn did not reduce yield significantly compared to yield from the 100% FC, while saving a significant amount of water. Physiological investigations at the three soil moisture treatments showed that a mild moisture deficit stress might have started at the 75% FC treatment. With further investigation, if savings in water at 75% FC result in a significant reduction in energy cost, it may be profitable to reduce soil moisture to 75% FC in a silt loam soil. 展开更多
关键词 CORN Water Use SOIL MOISTURE GROWTH STAGE Field Capacity
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部