Membrane microdomains or lipid rafts are known to be highly dynamic and to act as selective signal transduction mediators that facilitate interactions between the cell's external and internal environments.Lipid ra...Membrane microdomains or lipid rafts are known to be highly dynamic and to act as selective signal transduction mediators that facilitate interactions between the cell's external and internal environments.Lipid rafts play an important mediating role in the biology of cancer:they have been found in almost all existing experimental cancer models,including colorectal cancer (CRC),and play key regulatory roles in cell migration,metastasis,cell survival and tumor progression.This paper explores the current state of knowledge in this field by highlighting some of the pioneering and recent lipid raft studies performed on different CRC cell lines and human tissue samples.From this literature review,it becomes clear that membrane microdomains appear to be implicated in all key intracellular signaling pathways for lipid metabolism,drug resistance,cell adhesion,cell death,cell proliferation and many other processes in CRC.All signal transduction pathways seem to originate directly from those peculiar lipid islands,thereby orchestrating the colon cancer cells' state and fate.As confirmed by recent animal and preclinical studies in different CRC models,continuing to unravel the structure and function of lipid rafts-including their associated complex signaling pathways-will likely bring us one step closer to better monitoring and treating of colon cancer patients.展开更多
AIM: To characterise differences between three widely used colorectal cancer cell lines using ultrastructural selective staining for glycogen to determine variation in metastatic properties. METHODS: Transmission elec...AIM: To characterise differences between three widely used colorectal cancer cell lines using ultrastructural selective staining for glycogen to determine variation in metastatic properties. METHODS: Transmission electron microscopy was used in this investigation to help identify intracellular structures and morphological features which are precursors of tumor invasion. In addition to morphological markers, we used selective staining of glycogen as a marker for neoplastic cellular proliferation and determined whether levels of glycogen change between the three different cell lines. RESULTS: Ultrastructural analysis revealed morphological differences between the cell lines, as well as differentiation into two sub-populations within each cell line. Caco-2 cells contained large glycogen deposits as well as showing the most obvious morphological changes between the two sub-populations. SW480 cells also contained large glycogen stores as well as deep cellular protrusions when grown on porous filter membranes. HT-29 cells had trace amounts of glycogen stores with few cellular projections into the filter pores and no tight junction formation.CONCLUSION: Morphology indicative of metastatic properties coincided with larger glycogen deposits, providing strong evidence for the use of selective staining to determine the neoplastic properties of cells.展开更多
基金Supported by The Australian Research Council through Linkage Infrastructure, Equipment and Facilities grants, No.LE0775598the ARC/NHMRC FABLS Research Network, No.RN0460002
文摘Membrane microdomains or lipid rafts are known to be highly dynamic and to act as selective signal transduction mediators that facilitate interactions between the cell's external and internal environments.Lipid rafts play an important mediating role in the biology of cancer:they have been found in almost all existing experimental cancer models,including colorectal cancer (CRC),and play key regulatory roles in cell migration,metastasis,cell survival and tumor progression.This paper explores the current state of knowledge in this field by highlighting some of the pioneering and recent lipid raft studies performed on different CRC cell lines and human tissue samples.From this literature review,it becomes clear that membrane microdomains appear to be implicated in all key intracellular signaling pathways for lipid metabolism,drug resistance,cell adhesion,cell death,cell proliferation and many other processes in CRC.All signal transduction pathways seem to originate directly from those peculiar lipid islands,thereby orchestrating the colon cancer cells' state and fate.As confirmed by recent animal and preclinical studies in different CRC models,continuing to unravel the structure and function of lipid rafts-including their associated complex signaling pathways-will likely bring us one step closer to better monitoring and treating of colon cancer patients.
基金Supported by The Australian Research Council for fundingsome of the research reported herein through Linkage Infrastructure, Equipment and Facilities grants, No. LE0775598the ARC/NHMRC FABLS Research Network, No. RN0460002
文摘AIM: To characterise differences between three widely used colorectal cancer cell lines using ultrastructural selective staining for glycogen to determine variation in metastatic properties. METHODS: Transmission electron microscopy was used in this investigation to help identify intracellular structures and morphological features which are precursors of tumor invasion. In addition to morphological markers, we used selective staining of glycogen as a marker for neoplastic cellular proliferation and determined whether levels of glycogen change between the three different cell lines. RESULTS: Ultrastructural analysis revealed morphological differences between the cell lines, as well as differentiation into two sub-populations within each cell line. Caco-2 cells contained large glycogen deposits as well as showing the most obvious morphological changes between the two sub-populations. SW480 cells also contained large glycogen stores as well as deep cellular protrusions when grown on porous filter membranes. HT-29 cells had trace amounts of glycogen stores with few cellular projections into the filter pores and no tight junction formation.CONCLUSION: Morphology indicative of metastatic properties coincided with larger glycogen deposits, providing strong evidence for the use of selective staining to determine the neoplastic properties of cells.