A model was developed to describe the adsorption characteristic of mercury in flue gas based on one residual carbon sample and one activated carbon sample. The differential equations were established with mass balance...A model was developed to describe the adsorption characteristic of mercury in flue gas based on one residual carbon sample and one activated carbon sample. The differential equations were established with mass balance of mercury in the gas phase and in the solid phase. Then the model was solved using a Matlab program with a Runge-Kutta process. The mercury adsorption isotherms of these two adsorbents were obtained by breakthrough column experiments. The results show that at low gas phase mercury concentrations ( 〈 0. 3 mg/ m^3), the adsorption equilibrium of residual carbon is in accord with the case of a type Ⅱ isotherm of the Freundich theory. Whereas the data of activated carbon falls into the Langmuir relationship, it is the case of a type Ⅲ isotherm. The experimental data were fitted to the Freundlich model by Matlab software. The variances of mercury concentration are smaller than 0. 81 which implies the agreement between measurements and simulation is quite agreeable considering the wide scatter of the measurements. This model is useful for forecasting mercury removal efficiency and is helpful to the mechanism analysis of mercury adsorption on carbon-based adsorbent.展开更多
文摘A model was developed to describe the adsorption characteristic of mercury in flue gas based on one residual carbon sample and one activated carbon sample. The differential equations were established with mass balance of mercury in the gas phase and in the solid phase. Then the model was solved using a Matlab program with a Runge-Kutta process. The mercury adsorption isotherms of these two adsorbents were obtained by breakthrough column experiments. The results show that at low gas phase mercury concentrations ( 〈 0. 3 mg/ m^3), the adsorption equilibrium of residual carbon is in accord with the case of a type Ⅱ isotherm of the Freundich theory. Whereas the data of activated carbon falls into the Langmuir relationship, it is the case of a type Ⅲ isotherm. The experimental data were fitted to the Freundlich model by Matlab software. The variances of mercury concentration are smaller than 0. 81 which implies the agreement between measurements and simulation is quite agreeable considering the wide scatter of the measurements. This model is useful for forecasting mercury removal efficiency and is helpful to the mechanism analysis of mercury adsorption on carbon-based adsorbent.