Immune checkpoint blockade(ICB)therapy targeting PD-L1 via monoclonal antibody(m Ab)has shown extensive clinical benefits in the diverse types of advanced malignancies.However,most patients are completely refractory t...Immune checkpoint blockade(ICB)therapy targeting PD-L1 via monoclonal antibody(m Ab)has shown extensive clinical benefits in the diverse types of advanced malignancies.However,most patients are completely refractory to ICB therapy owing to the PD-L1 recycling mechanism.Herein,we propose photo-induced crosslinked and anti-PD-L1 peptide incorporated liposomes(immune checkpoint blockade liposomes;ICB-LPs)to promote PD-L1 multivalent binding for inducing lysosomal degradation of PD-L1 in tumor cells.The ICB-LPs are prepared by formulation of DC_(8,9)PC with photo-polymerized diacetylenic moiety,1,2-dipalmitoylphosphatidylcholine(DPPC)and anti-PD-L1peptide(D-form NYSKPTDRQYHF)-conjugated DSPE-PEG_(2k)(anti-PD-L1-DSPE-PEG_(2k))in a molar ratio of 45:45:10,followed by cross-linking of liposomal bilayer upon UV irradiation.The 10 mol% antiPD-L1-DSPE-PEG_(2k)incorporated ICB-LPs have a nano-sized lipid bilayer structure with an average diameter of 137.7±1.04 nm,showing a high stability in serum condition.Importantly,the ICB-LPs efficiently promote the multivalent binding with PD-L1 on the tumor cell membrane,which are endocytosed with aim to deliver PD-L1 to the lysosomes,wherein the durable PD-L1 degradation is observed for72 h,in contrast to anti PD-L1 m Abs showing the rapid PD-L1 recycling within 9 h.The in vitro coculture experiments with CD8^(+)T cells show that ICB-LPs effectively enhance the T cell-mediated antitumor immune responses against tumor cells by blocking the PD-L1/PD-1 axis.When ICB-LPs are intravenously injected into colon tumor-bearing mice,they efficiently accumulate within the targeted tumor tissues via both passive and active tumor targeting,inducing a potent T cell-mediated antitumor immune response by effective and durable PD-L1 degradation.Collectively,this study demonstrates the superior antitumor efficacy of crosslinked and anti-PD-L1 peptide incorporated liposome formulation that promotes PD-L1 multivalent binding for trafficking of PD-L1 toward the lysosomes instead of the recycling endosomes.展开更多
Synergistic immunotherapy of immune checkpoint blockade (ICB) and immunogenic cell death (ICD) has shown remarkable therapeutic efficacy in various cancers. However, patients show low response rates and undesirable ou...Synergistic immunotherapy of immune checkpoint blockade (ICB) and immunogenic cell death (ICD) has shown remarkable therapeutic efficacy in various cancers. However, patients show low response rates and undesirable outcomes to these combination therapies owing to the recycling mechanism of programmed death-ligand 1 (PD-L1) and the systemic toxicity of ICD-inducing chemotherapeutic drugs. Herein, we propose all-in-one glycol chitosan nanoparticles (CNPs) that can deliver anti-PD-L1 peptide (PP) and doxorubicin (DOX) to targeted tumor tissues for a safe and more effective synergistic immunotherapy. The PP-CNPs, which are prepared by conjugating ᴅ-form PP (NYSKPTDRQYHF) to CNPs, form stable nanoparticles that promote multivalent binding with PD-L1 proteins on the targeted tumor cell surface, resulting in effective lysosomal PD-L1 degradation in contrast with anti-PD-L1 antibody, which induces recycling of endocytosed PD-L1. Consequently, PP-CNPs prevent subcellular PD-L1 recycling and eventually destruct immune escape mechanism in CT26 colon tumor-bearing mice. Moreover, the ICD inducer, DOX is loaded into PP-CNPs (DOX-PP-CNPs) for synergistic ICD and ICB therapy, inducing a large number of damage-associated molecular patterns (DAMPs) in targeted tumor tissues with minimal toxicity in normal tissues. When the DOX-PP-CNPs are intravenously injected into CT26 colon tumor-bearing mice, PP and DOX are efficiently delivered to the tumor tissues via nanoparticle-derived passive and active targeting, which eventually induce both lysosomal PD-L1 degradation and substantial ICD, resulting in a high rate of complete tumor regression (CR: 60%) by a strong antitumor immune response. Collectively, this study demonstrates the superior efficacy of synergistic immunotherapy using all-in-one nanoparticles to deliver PP and DOX to targeted tumor tissues.展开更多
We previously demonstrated that octadecylamine-functionalized nanodiamond(ND-ODA)and dexamethasone(Dex)-adsorbed ND-ODA(ND-ODA–Dex)promoted anti-inflammatory and proregenerative behavior in human macrophages in vitro...We previously demonstrated that octadecylamine-functionalized nanodiamond(ND-ODA)and dexamethasone(Dex)-adsorbed ND-ODA(ND-ODA–Dex)promoted anti-inflammatory and proregenerative behavior in human macrophages in vitro.In this study,we performed a pilot study to investigate if these immunomodulatory effects translate when used as a treatment for rheumatoid arthritis in mice.Following local injection in limbs of mice with collagen type II-induced arthritis,microcomputed tomography showed that mice treated with a low dose of ND-ODA and ND-ODA–Dex did not experience bone loss to the levels observed in non-treated arthritic controls.A low dose of ND-ODA and ND-ODA–Dex also reduced macrophage infiltration and expression of proinflammatory mediators iNOS and tumor necrosis factor-a compared to the arthritic control,while a high dose of ND-ODA increased expression of these markers.Overall,these results suggest that ND-ODA may be useful as an inherently immunomodulatory platform,and support the need for an in-depth study,especially with respect to the effects of dose.展开更多
The cathepsin B-responsive prodrugs are promising strategies to reduce the serious adverse effects of anticancer drugs by improving the cancer selectivity that can be specifically activated by overexpressed cathepsin ...The cathepsin B-responsive prodrugs are promising strategies to reduce the serious adverse effects of anticancer drugs by improving the cancer selectivity that can be specifically activated by overexpressed cathepsin B in targeted cancer cells.However,clinical translation of such therapeutic approaches has been restricted by low antitumor efficacy that is mainly attributable to undesirable pharmacokinetic profiles and inefficient tumor-targeting of cathepsin B-responsive prodrugs,due to their small-molecule structure.In recent decades,many researchers have widely investigated the drug delivery system(DDS)to improve the in vivo pharmacokinetic profiles and tumor-targeting efficiency of cathepsin B-responsive prodrugs via the application of polymers,dendrimers,antibodies,lipids,and inorganic nanoparticles as drug carriers.In addition,the potential therapeutic efficacy of DDS for cathepsin B-responsive prodrugs is demonstrated in multiple studies and combinatorial treatment with typical therapeutic modalities can effectively overcome the challenges of tumor heterogeneity and multidrug resistance.In this review,recent advances and progress of new DDS for cathepsin B-responsive prodrugs are outlined,and their clinical trials are discussed.Besides,potential challenges and the outlooks for clinical translation of cathepsin B-responsive prodrugs are highlighted.展开更多
基金supported by grants from the National Research Foundation(NRF)of Korea,funded by the Ministry of Science(NRF-2022M3H4A1A03067401 and NRF-2021R1C1C2005460,Republic of Korea)the Intramural Research Program of KIST。
文摘Immune checkpoint blockade(ICB)therapy targeting PD-L1 via monoclonal antibody(m Ab)has shown extensive clinical benefits in the diverse types of advanced malignancies.However,most patients are completely refractory to ICB therapy owing to the PD-L1 recycling mechanism.Herein,we propose photo-induced crosslinked and anti-PD-L1 peptide incorporated liposomes(immune checkpoint blockade liposomes;ICB-LPs)to promote PD-L1 multivalent binding for inducing lysosomal degradation of PD-L1 in tumor cells.The ICB-LPs are prepared by formulation of DC_(8,9)PC with photo-polymerized diacetylenic moiety,1,2-dipalmitoylphosphatidylcholine(DPPC)and anti-PD-L1peptide(D-form NYSKPTDRQYHF)-conjugated DSPE-PEG_(2k)(anti-PD-L1-DSPE-PEG_(2k))in a molar ratio of 45:45:10,followed by cross-linking of liposomal bilayer upon UV irradiation.The 10 mol% antiPD-L1-DSPE-PEG_(2k)incorporated ICB-LPs have a nano-sized lipid bilayer structure with an average diameter of 137.7±1.04 nm,showing a high stability in serum condition.Importantly,the ICB-LPs efficiently promote the multivalent binding with PD-L1 on the tumor cell membrane,which are endocytosed with aim to deliver PD-L1 to the lysosomes,wherein the durable PD-L1 degradation is observed for72 h,in contrast to anti PD-L1 m Abs showing the rapid PD-L1 recycling within 9 h.The in vitro coculture experiments with CD8^(+)T cells show that ICB-LPs effectively enhance the T cell-mediated antitumor immune responses against tumor cells by blocking the PD-L1/PD-1 axis.When ICB-LPs are intravenously injected into colon tumor-bearing mice,they efficiently accumulate within the targeted tumor tissues via both passive and active tumor targeting,inducing a potent T cell-mediated antitumor immune response by effective and durable PD-L1 degradation.Collectively,this study demonstrates the superior antitumor efficacy of crosslinked and anti-PD-L1 peptide incorporated liposome formulation that promotes PD-L1 multivalent binding for trafficking of PD-L1 toward the lysosomes instead of the recycling endosomes.
基金supported by grants from the National Research Foundation(NRF)of Koreafunded by the Ministry of Science(NRF-2022M3H4A1A03067401 and NRF-2021R1C1C2005460)and the Intramural Research Program of KIST.
文摘Synergistic immunotherapy of immune checkpoint blockade (ICB) and immunogenic cell death (ICD) has shown remarkable therapeutic efficacy in various cancers. However, patients show low response rates and undesirable outcomes to these combination therapies owing to the recycling mechanism of programmed death-ligand 1 (PD-L1) and the systemic toxicity of ICD-inducing chemotherapeutic drugs. Herein, we propose all-in-one glycol chitosan nanoparticles (CNPs) that can deliver anti-PD-L1 peptide (PP) and doxorubicin (DOX) to targeted tumor tissues for a safe and more effective synergistic immunotherapy. The PP-CNPs, which are prepared by conjugating ᴅ-form PP (NYSKPTDRQYHF) to CNPs, form stable nanoparticles that promote multivalent binding with PD-L1 proteins on the targeted tumor cell surface, resulting in effective lysosomal PD-L1 degradation in contrast with anti-PD-L1 antibody, which induces recycling of endocytosed PD-L1. Consequently, PP-CNPs prevent subcellular PD-L1 recycling and eventually destruct immune escape mechanism in CT26 colon tumor-bearing mice. Moreover, the ICD inducer, DOX is loaded into PP-CNPs (DOX-PP-CNPs) for synergistic ICD and ICB therapy, inducing a large number of damage-associated molecular patterns (DAMPs) in targeted tumor tissues with minimal toxicity in normal tissues. When the DOX-PP-CNPs are intravenously injected into CT26 colon tumor-bearing mice, PP and DOX are efficiently delivered to the tumor tissues via nanoparticle-derived passive and active targeting, which eventually induce both lysosomal PD-L1 degradation and substantial ICD, resulting in a high rate of complete tumor regression (CR: 60%) by a strong antitumor immune response. Collectively, this study demonstrates the superior efficacy of synergistic immunotherapy using all-in-one nanoparticles to deliver PP and DOX to targeted tumor tissues.
基金the National Institutes of Health grant R01 HL130037.A.P.was supported by Whitaker International and David L.Boren fellowships.
文摘We previously demonstrated that octadecylamine-functionalized nanodiamond(ND-ODA)and dexamethasone(Dex)-adsorbed ND-ODA(ND-ODA–Dex)promoted anti-inflammatory and proregenerative behavior in human macrophages in vitro.In this study,we performed a pilot study to investigate if these immunomodulatory effects translate when used as a treatment for rheumatoid arthritis in mice.Following local injection in limbs of mice with collagen type II-induced arthritis,microcomputed tomography showed that mice treated with a low dose of ND-ODA and ND-ODA–Dex did not experience bone loss to the levels observed in non-treated arthritic controls.A low dose of ND-ODA and ND-ODA–Dex also reduced macrophage infiltration and expression of proinflammatory mediators iNOS and tumor necrosis factor-a compared to the arthritic control,while a high dose of ND-ODA increased expression of these markers.Overall,these results suggest that ND-ODA may be useful as an inherently immunomodulatory platform,and support the need for an in-depth study,especially with respect to the effects of dose.
基金the National Research Foundation of Korea(NRF)grant funded by the Korea government(Nos.NRF2019R1A2C3006283 and NRF-2021R1C1C2005460)the KUKIST Graduate School of Converging Science and Technology(Korea University&KIST)the Intramural Research Program of KIST.
文摘The cathepsin B-responsive prodrugs are promising strategies to reduce the serious adverse effects of anticancer drugs by improving the cancer selectivity that can be specifically activated by overexpressed cathepsin B in targeted cancer cells.However,clinical translation of such therapeutic approaches has been restricted by low antitumor efficacy that is mainly attributable to undesirable pharmacokinetic profiles and inefficient tumor-targeting of cathepsin B-responsive prodrugs,due to their small-molecule structure.In recent decades,many researchers have widely investigated the drug delivery system(DDS)to improve the in vivo pharmacokinetic profiles and tumor-targeting efficiency of cathepsin B-responsive prodrugs via the application of polymers,dendrimers,antibodies,lipids,and inorganic nanoparticles as drug carriers.In addition,the potential therapeutic efficacy of DDS for cathepsin B-responsive prodrugs is demonstrated in multiple studies and combinatorial treatment with typical therapeutic modalities can effectively overcome the challenges of tumor heterogeneity and multidrug resistance.In this review,recent advances and progress of new DDS for cathepsin B-responsive prodrugs are outlined,and their clinical trials are discussed.Besides,potential challenges and the outlooks for clinical translation of cathepsin B-responsive prodrugs are highlighted.