针对短时傅里叶变换与小波变换对心电图(Electrocardiogram,ECG)信号特征提取不足以及心律失常识别困难的问题,提出了一种基于S变换特征选择的心律失常分类算法。首先对ECG信号进行S变换,并从幅值和相位两个角度提取ECG信号的时频特征,...针对短时傅里叶变换与小波变换对心电图(Electrocardiogram,ECG)信号特征提取不足以及心律失常识别困难的问题,提出了一种基于S变换特征选择的心律失常分类算法。首先对ECG信号进行S变换,并从幅值和相位两个角度提取ECG信号的时频特征,与形态特征和RR间隔组成原始特征向量。然后将遗传算法与支持向量机(Support vector machine,SVM)结合组成Wrapper式特征选择方法,并在其中融入ReliefF算法,即采用ReliefF算法计算特征权重,并根据特征权重大小来指导遗传算法种群初始化,遗传算法以SVM的分类性能作为适应度函数来搜索特征子集。最后使用"一对多"(One against all,OAA)SVM对MIT-BIH心律失常数据库8种类型心拍进行分类。实验结果表明,该算法达到了较好的分类效果,灵敏度、特异性和准确率分别为96.14%,99.75%和99.81%。展开更多
文摘针对短时傅里叶变换与小波变换对心电图(Electrocardiogram,ECG)信号特征提取不足以及心律失常识别困难的问题,提出了一种基于S变换特征选择的心律失常分类算法。首先对ECG信号进行S变换,并从幅值和相位两个角度提取ECG信号的时频特征,与形态特征和RR间隔组成原始特征向量。然后将遗传算法与支持向量机(Support vector machine,SVM)结合组成Wrapper式特征选择方法,并在其中融入ReliefF算法,即采用ReliefF算法计算特征权重,并根据特征权重大小来指导遗传算法种群初始化,遗传算法以SVM的分类性能作为适应度函数来搜索特征子集。最后使用"一对多"(One against all,OAA)SVM对MIT-BIH心律失常数据库8种类型心拍进行分类。实验结果表明,该算法达到了较好的分类效果,灵敏度、特异性和准确率分别为96.14%,99.75%和99.81%。