Mesoscale eddies are common oceanic phenomena.Although many related studies have been conducted,the ability for mesoscale eddies to carry real particles remains poorly addressed.We considered the drifters as real part...Mesoscale eddies are common oceanic phenomena.Although many related studies have been conducted,the ability for mesoscale eddies to carry real particles remains poorly addressed.We considered the drifters as real particles to characterize the capability of mesoscale eddies to carry particles.Firstly,mesoscale eddies in the northwest Pacific(99°E-180°E,0°-66°N)were identified using sea level anomaly(SLA)data from 1993 to 2015.Secondly,three important parameters(the carrying days,the number of circles the drifter revolving around the eddy center,and the carrying distances)were calculated by colocalizing eddy data with drifters.Finally,statistical analysis and composite analysis were conducted,reflecting the capability of mesoscale eddies to carry particles.The mechanisms on the carrying capability of eddies were also discussed.Results show that(1)the motion of carried drifters reflects the upper limit of rotational speed of eddies that the drifters revolve around the eddy center by≤90°for one day in most cases;(2)the drifters tend to be carried for a longer time when their minimal distances to the eddy center measured with normalized distance are small;(3)there are two types of eddies(cyclonic and anticyclonic eddies)in different subregions of northwest Pacific,and each has a different carrying capability(on average,similar in the tropical ocean and Subtropical Countercurrent,cyclonic eddies tend to have stronger carrying capability in Southern Kuroshio Extension,and anticyclonic eddies tend to have stronger carrying capability in Northern Kuroshio Extension and Subarctic Gyre);(4)on average,the carried drifters tend to travel for a longer time around the normalized eddy radii ranging from 0.41 to 0.76;(5)the carrying days are related to the Rossby number of the eddy(in general when the Rossby number is smaller,the carrying days are longer).展开更多
Utilizing the 45 a European Centre for Medium-Range Weather Forecasts (ECMWF) reanalysis wave da- ta (ERA-40), the long-term trend of the sea surface wind speed and (wind wave, swell, mixed wave) wave height in ...Utilizing the 45 a European Centre for Medium-Range Weather Forecasts (ECMWF) reanalysis wave da- ta (ERA-40), the long-term trend of the sea surface wind speed and (wind wave, swell, mixed wave) wave height in the global ocean at grid point 1.5°× 1.5° during the last 44 a is analyzed. It is discovered that a ma- jority of global ocean swell wave height exhibits a significant linear increasing trend (2-8 cm/decade), the distribution of annual linear trend of the significant wave height (SWH) has good consistency with that of the swell wave height. The sea surface wind speed shows an annually linear increasing trend mainly con- centrated in the most waters of Southern Hemisphere westerlies, high latitude of the North Pacific, Indian Ocean north of 30°S, the waters near the western equatorial Pacific and low latitudes of the Atlantic waters, and the annually linear decreasing mainly in central and eastern equator of the Pacific, Juan. Fernandez Archipelago, the waters near South Georgia Island in the Atlantic waters. The linear variational distribution characteristic of the wind wave height is similar to that of the sea surface wind speed. Another find is that the swell is dominant in the mixed wave, the swell index in the central ocean is generally greater than that in the offshore, and the swell index in the eastern ocean coast is greater than that in the western ocean inshore, and in year-round hemisphere westerlies the swell index is relatively low.展开更多
基金Supported by the National Key R&D Program of China(No.2018YFC1406202)the National Natural Science Foundation of China(No.41976188)。
文摘Mesoscale eddies are common oceanic phenomena.Although many related studies have been conducted,the ability for mesoscale eddies to carry real particles remains poorly addressed.We considered the drifters as real particles to characterize the capability of mesoscale eddies to carry particles.Firstly,mesoscale eddies in the northwest Pacific(99°E-180°E,0°-66°N)were identified using sea level anomaly(SLA)data from 1993 to 2015.Secondly,three important parameters(the carrying days,the number of circles the drifter revolving around the eddy center,and the carrying distances)were calculated by colocalizing eddy data with drifters.Finally,statistical analysis and composite analysis were conducted,reflecting the capability of mesoscale eddies to carry particles.The mechanisms on the carrying capability of eddies were also discussed.Results show that(1)the motion of carried drifters reflects the upper limit of rotational speed of eddies that the drifters revolve around the eddy center by≤90°for one day in most cases;(2)the drifters tend to be carried for a longer time when their minimal distances to the eddy center measured with normalized distance are small;(3)there are two types of eddies(cyclonic and anticyclonic eddies)in different subregions of northwest Pacific,and each has a different carrying capability(on average,similar in the tropical ocean and Subtropical Countercurrent,cyclonic eddies tend to have stronger carrying capability in Southern Kuroshio Extension,and anticyclonic eddies tend to have stronger carrying capability in Northern Kuroshio Extension and Subarctic Gyre);(4)on average,the carried drifters tend to travel for a longer time around the normalized eddy radii ranging from 0.41 to 0.76;(5)the carrying days are related to the Rossby number of the eddy(in general when the Rossby number is smaller,the carrying days are longer).
基金The National Basic Research Program of China under contract No.2012CB957803
文摘Utilizing the 45 a European Centre for Medium-Range Weather Forecasts (ECMWF) reanalysis wave da- ta (ERA-40), the long-term trend of the sea surface wind speed and (wind wave, swell, mixed wave) wave height in the global ocean at grid point 1.5°× 1.5° during the last 44 a is analyzed. It is discovered that a ma- jority of global ocean swell wave height exhibits a significant linear increasing trend (2-8 cm/decade), the distribution of annual linear trend of the significant wave height (SWH) has good consistency with that of the swell wave height. The sea surface wind speed shows an annually linear increasing trend mainly con- centrated in the most waters of Southern Hemisphere westerlies, high latitude of the North Pacific, Indian Ocean north of 30°S, the waters near the western equatorial Pacific and low latitudes of the Atlantic waters, and the annually linear decreasing mainly in central and eastern equator of the Pacific, Juan. Fernandez Archipelago, the waters near South Georgia Island in the Atlantic waters. The linear variational distribution characteristic of the wind wave height is similar to that of the sea surface wind speed. Another find is that the swell is dominant in the mixed wave, the swell index in the central ocean is generally greater than that in the offshore, and the swell index in the eastern ocean coast is greater than that in the western ocean inshore, and in year-round hemisphere westerlies the swell index is relatively low.