Unsteady wash waves generated by a ship with constant speed moving across an uneven bottom topography are investigated by numerical simulations based on a Mixed Euler–Lagrange(MEL) method. The transition is accomplis...Unsteady wash waves generated by a ship with constant speed moving across an uneven bottom topography are investigated by numerical simulations based on a Mixed Euler–Lagrange(MEL) method. The transition is accomplished by the ship traveling from the depth h1 into the depth h2 via a step bottom. A small tsunami would be created after this transition. However, the unsteady wave-making resistance induced by this new phenomenon has not been well documented by literature. Therefore, the main purpose of the present study is to quantify the effects of an uneven bottom on the unsteady wash waves and wave-making resistance acting on the ship. An upwind differential scheme is commonly used in the Euler method to deal with the convection terms under free-surface condition to prevent waves in the upstream. Evidently, it cannot be applied to the present problem due to upstream waves generated by the ship would be dampened by the upwind scheme. The central differential scheme provides more accurate results,but it is not unconditionally stable. An MEL method is therefore employed to investigate the upstream wave generated by the ship moving over the uneven bottom. Simulation results show that the hydrodynamic interaction between the ship and the uneven bottom could initiate an upstream tsunami, as well as unsteady wave-making resistance on ships.The unsteady wave-making resistance oscillates periodically, and the amplitude and period of the oscillations are highly dependent on speed and water depth.展开更多
The cross-flow(CF)vortex-induced vibration(VIV)of a deepwater steep wave riser(SWR)subjected to uniform or shear flow loads is investigated numerically.The model is based on a three-dimensional(3D)nonlinear elastic ro...The cross-flow(CF)vortex-induced vibration(VIV)of a deepwater steep wave riser(SWR)subjected to uniform or shear flow loads is investigated numerically.The model is based on a three-dimensional(3D)nonlinear elastic rod theory coupled with a wake oscillator model.In this numerical simulation,the nonlinear motion equations of the riser with large deformation features are established in a global coordinate system to avoid the transformation between global and local coordinate systems,and are discretized with the time-domain finite element method(FEM).A wakeoscillator model is employed to study the vortex shedding,and the lift force generated by the wake flow is described in a van der Pol equation.A Newmark-βiterative scheme is used to solve their coupling equation for the VIV response of the SWR.The developed model is validated against the existing experimental results for the VIV response of the top-tension riser(TTR).Then,the numerical simulations are executed to determine VIV characteristics of the SWR.The effects of both flow velocity and the spanwise length of the flow field on the drag coefficient in the inline(IL)direction and the lift coefficient in the CF direction are investigated systematically.The results indicate that compared with TTR,the low frequency and multi-modal vibration are the main components of the SWR due to the large deformation and flexible characteristics.For shear flow,the multi-frequency resonance dominates the VIV response of the SWR,especially at the hang-off segment.展开更多
压缩空气产生过程中,大量的电能转换成热,余热回收利用潜力巨大。高效回收利用压缩空气热量成为空气压缩领域的当务之急。针对空压机余热回收利用,介绍了空压机余热产生的原理;归纳总结了空压机余热常用回收利用的直接、润滑油间接或热...压缩空气产生过程中,大量的电能转换成热,余热回收利用潜力巨大。高效回收利用压缩空气热量成为空气压缩领域的当务之急。针对空压机余热回收利用,介绍了空压机余热产生的原理;归纳总结了空压机余热常用回收利用的直接、润滑油间接或热泵制热水的方式;基于有机朗肯循环(Organic Rankine Cycle,ORC)在低品质余热方面的应用,详细总结了空压机余热发电和制冷的研究内容及发展现状;重点总结了大规模压缩空气储能(Compressed Air Energy Storage,CAES)系统在实现空压机余热大规模、高效应用研究;提出了对空压机余热高效回收的展望,为后续空压机余热高效回收利用研究提供了参考。展开更多
The load and corrosion caused by the harsh marine environment lead to the severe degradation of offshore equipment and to their compromised security and reliability. In the quantitative risk analysis, the failure mode...The load and corrosion caused by the harsh marine environment lead to the severe degradation of offshore equipment and to their compromised security and reliability. In the quantitative risk analysis, the failure models are difficult to establish through traditional statistical methods. Hence, the calculation of the occurrence probability of small sample events is often met with great uncertainty. In this study, the Bayesian statistical method is implemented to analyze the oil and gas leakages of FPSO internal turret, which is a typical small sample risk but could lead to severe losses.According to the corresponding failure mechanism, two Bayesian statistical models using the Weibull distribution and logarithmic normal distribution as the population distribution are established, and the posterior distribution of the corresponding parameters is calculated. The optimal Bayesian statistical model is determined according to the Bayesian information criterion and Akaike criterion. On the basis of the determined optimal model, the corresponding reliability index is solved to provide basic data for the subsequent risk assessments of FPSO systems.展开更多
基金financially supported by Natural Scienceof University of Jiangsu Province (Grant No.22KJB580004)the Key R&D Projects in Guangdong Province (Grant No.2020B1111500001)the Jiangsu Province“Six Talents Peak”High-Level Talents Support Project (Grant No.2018-KTHY-033)。
文摘Unsteady wash waves generated by a ship with constant speed moving across an uneven bottom topography are investigated by numerical simulations based on a Mixed Euler–Lagrange(MEL) method. The transition is accomplished by the ship traveling from the depth h1 into the depth h2 via a step bottom. A small tsunami would be created after this transition. However, the unsteady wave-making resistance induced by this new phenomenon has not been well documented by literature. Therefore, the main purpose of the present study is to quantify the effects of an uneven bottom on the unsteady wash waves and wave-making resistance acting on the ship. An upwind differential scheme is commonly used in the Euler method to deal with the convection terms under free-surface condition to prevent waves in the upstream. Evidently, it cannot be applied to the present problem due to upstream waves generated by the ship would be dampened by the upwind scheme. The central differential scheme provides more accurate results,but it is not unconditionally stable. An MEL method is therefore employed to investigate the upstream wave generated by the ship moving over the uneven bottom. Simulation results show that the hydrodynamic interaction between the ship and the uneven bottom could initiate an upstream tsunami, as well as unsteady wave-making resistance on ships.The unsteady wave-making resistance oscillates periodically, and the amplitude and period of the oscillations are highly dependent on speed and water depth.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.52111530137 and 52025112)the Natural Science Found of Jiangsu Province(Grant No.BK20160556)the Jiangsu Provincial Higher Education Natural Science Research Major Project(Grant No.18KJA580003)。
文摘The cross-flow(CF)vortex-induced vibration(VIV)of a deepwater steep wave riser(SWR)subjected to uniform or shear flow loads is investigated numerically.The model is based on a three-dimensional(3D)nonlinear elastic rod theory coupled with a wake oscillator model.In this numerical simulation,the nonlinear motion equations of the riser with large deformation features are established in a global coordinate system to avoid the transformation between global and local coordinate systems,and are discretized with the time-domain finite element method(FEM).A wakeoscillator model is employed to study the vortex shedding,and the lift force generated by the wake flow is described in a van der Pol equation.A Newmark-βiterative scheme is used to solve their coupling equation for the VIV response of the SWR.The developed model is validated against the existing experimental results for the VIV response of the top-tension riser(TTR).Then,the numerical simulations are executed to determine VIV characteristics of the SWR.The effects of both flow velocity and the spanwise length of the flow field on the drag coefficient in the inline(IL)direction and the lift coefficient in the CF direction are investigated systematically.The results indicate that compared with TTR,the low frequency and multi-modal vibration are the main components of the SWR due to the large deformation and flexible characteristics.For shear flow,the multi-frequency resonance dominates the VIV response of the SWR,especially at the hang-off segment.
文摘压缩空气产生过程中,大量的电能转换成热,余热回收利用潜力巨大。高效回收利用压缩空气热量成为空气压缩领域的当务之急。针对空压机余热回收利用,介绍了空压机余热产生的原理;归纳总结了空压机余热常用回收利用的直接、润滑油间接或热泵制热水的方式;基于有机朗肯循环(Organic Rankine Cycle,ORC)在低品质余热方面的应用,详细总结了空压机余热发电和制冷的研究内容及发展现状;重点总结了大规模压缩空气储能(Compressed Air Energy Storage,CAES)系统在实现空压机余热大规模、高效应用研究;提出了对空压机余热高效回收的展望,为后续空压机余热高效回收利用研究提供了参考。
基金financially supported by the National International Science and Technology Cooperation Specific Projectthe Development of Risk Assessment Software for Floating Offshore Wind Turbine(Grant No.2013DFE73060)the Development of Failure Database and Risk Assessment System for FPSO(Grant No.G014614002)
文摘The load and corrosion caused by the harsh marine environment lead to the severe degradation of offshore equipment and to their compromised security and reliability. In the quantitative risk analysis, the failure models are difficult to establish through traditional statistical methods. Hence, the calculation of the occurrence probability of small sample events is often met with great uncertainty. In this study, the Bayesian statistical method is implemented to analyze the oil and gas leakages of FPSO internal turret, which is a typical small sample risk but could lead to severe losses.According to the corresponding failure mechanism, two Bayesian statistical models using the Weibull distribution and logarithmic normal distribution as the population distribution are established, and the posterior distribution of the corresponding parameters is calculated. The optimal Bayesian statistical model is determined according to the Bayesian information criterion and Akaike criterion. On the basis of the determined optimal model, the corresponding reliability index is solved to provide basic data for the subsequent risk assessments of FPSO systems.