贝叶斯网络是目前不确定知识表达和推理领域最有效的理论模型之一,利用贝叶斯网络进行分析和推理前首先需要通过结构学习和参数学习获取其网络模型,其中结构学习是参数学习的基础。针对现有萤火虫算法不符合生物学规则以及学习贝叶斯网...贝叶斯网络是目前不确定知识表达和推理领域最有效的理论模型之一,利用贝叶斯网络进行分析和推理前首先需要通过结构学习和参数学习获取其网络模型,其中结构学习是参数学习的基础。针对现有萤火虫算法不符合生物学规则以及学习贝叶斯网络结构存在效率低、容易陷入局部最优等问题,设计了一种基于互信息与性别机制的萤火虫算法(firefly algorithm based on mutual information and gender mechanism,MGM-FA)。首先,通过计算节点互信息得到贝叶斯网络骨架图,基于骨架图驱动MGM-FA算法生成初始种群;其次,引入基于性别机制的个性化贝叶斯网络种群更新策略,以保障贝叶斯网络个体的多样性;最后,引入局部优化器和扰动操作符,增强算法的寻优能力。分别在不同规模的标准网络上进行仿真实验,与现有同类型算法相比,该算法精度和效率均有所提升。展开更多
针对红外图像纹理不清晰、亮度低、高噪声的问题,提出了一种自适应多特征融合的红外图像增强算法。首先,通过用自动线性映射的方法对14位红外图像进行有效特征提取得到了16位图像,提升了图像可视化效果。其次,引入广义反锐化掩模(Genera...针对红外图像纹理不清晰、亮度低、高噪声的问题,提出了一种自适应多特征融合的红外图像增强算法。首先,通过用自动线性映射的方法对14位红外图像进行有效特征提取得到了16位图像,提升了图像可视化效果。其次,引入广义反锐化掩模(Generalized Unsharp Masking,GUM)算法与带色彩恢复的多尺度视网膜(Multi-Scale Retinex with Color Restoration,MSRCR)增强算法联合处理的方法,获得图像不同尺度的有效信息,提升了图像的对比度。最后设计了自适应权重图,并结合图像金字塔结构的特性,对不同特征层进行有效信息的互补融合,提升了图像亮度,丰富了图像的纹理信息。实验结果表明,此算法有效提升了红外图像的对比度和视觉效果;相较于现有的几种算法,其平均梯度(Average Gradient,AG)约提升0.6%,峰值信噪比(Peak Signal-to-Noise Ratio,PSNR)约提升10%,图像的边缘信息有效率约提升11%,图像的清晰度约提升10%。展开更多
文摘贝叶斯网络是目前不确定知识表达和推理领域最有效的理论模型之一,利用贝叶斯网络进行分析和推理前首先需要通过结构学习和参数学习获取其网络模型,其中结构学习是参数学习的基础。针对现有萤火虫算法不符合生物学规则以及学习贝叶斯网络结构存在效率低、容易陷入局部最优等问题,设计了一种基于互信息与性别机制的萤火虫算法(firefly algorithm based on mutual information and gender mechanism,MGM-FA)。首先,通过计算节点互信息得到贝叶斯网络骨架图,基于骨架图驱动MGM-FA算法生成初始种群;其次,引入基于性别机制的个性化贝叶斯网络种群更新策略,以保障贝叶斯网络个体的多样性;最后,引入局部优化器和扰动操作符,增强算法的寻优能力。分别在不同规模的标准网络上进行仿真实验,与现有同类型算法相比,该算法精度和效率均有所提升。
文摘针对红外图像纹理不清晰、亮度低、高噪声的问题,提出了一种自适应多特征融合的红外图像增强算法。首先,通过用自动线性映射的方法对14位红外图像进行有效特征提取得到了16位图像,提升了图像可视化效果。其次,引入广义反锐化掩模(Generalized Unsharp Masking,GUM)算法与带色彩恢复的多尺度视网膜(Multi-Scale Retinex with Color Restoration,MSRCR)增强算法联合处理的方法,获得图像不同尺度的有效信息,提升了图像的对比度。最后设计了自适应权重图,并结合图像金字塔结构的特性,对不同特征层进行有效信息的互补融合,提升了图像亮度,丰富了图像的纹理信息。实验结果表明,此算法有效提升了红外图像的对比度和视觉效果;相较于现有的几种算法,其平均梯度(Average Gradient,AG)约提升0.6%,峰值信噪比(Peak Signal-to-Noise Ratio,PSNR)约提升10%,图像的边缘信息有效率约提升11%,图像的清晰度约提升10%。