Profles of tidal current and suspended sediment concentration (SSC) were measured in the North Branch of the Changjiang Estuary from neap tide to spring tide in April 2010. The measurement data were analyzed to dete...Profles of tidal current and suspended sediment concentration (SSC) were measured in the North Branch of the Changjiang Estuary from neap tide to spring tide in April 2010. The measurement data were analyzed to determine the characteristics of intratidal and neap-spring variations of SSC and suspended sediment transport. Modulated by tidal range and current speed, the tidal mean SSC increased from 0.5 kg/m3 in neap tide to 3.5 kg/ma in spring tide. The intratidal variation of the depth-mean SSC can be summarized into three types: V-shape variation in neap tide, M-shape and mixed M-V shape variation in medium and spring tides. The occurrence of these variation types is controlled by the relative intensity and interaction of resuspension, settling and impact of water exchange from the rise and fall of tide. In neap tide the V-shape variation is mainly due to the dominant effect of the water exchange from the rise and fall of tide. During medium and spring tides, resuspension and settling processes become dominant. The interactions of these processes, together with the sustained high ebb current and shorter duration of low-tide slack, are respon- sible for the M-shape and M-V shape SSC variation. Weakly consolidated mud and high current speed cause significant resuspension and remarkable flood and ebb SSC peaks. Setting occurs at the slack water periods to cause SSC troughs and formation of a thin flufflayer on the bed. Fluxes of water and suspended sediment averaged over the neap-spring cycle are all seawards, but the magnitude and direction of tidal net sediment flux is highly variable.展开更多
Time series measurements were conducted on suspended sediment and current velocity from neap tide to spring tide in the South Branch of the upper Changjiang Estuary in the summer of 2011. Strong flood-ebb asymmetry in...Time series measurements were conducted on suspended sediment and current velocity from neap tide to spring tide in the South Branch of the upper Changjiang Estuary in the summer of 2011. Strong flood-ebb asymmetry in the current velocity was observed in the South Branch as a result of high river runoff and tide deformation, in which the magnitude and duration of ebb currents were significantly greater than those of flood currents. The suspended sediment concentration(SSC) and suspended median grain size also exhibited remarkable flood-ebb variation; these variables were considerably larger during the ebb than during the flood and increased from neap to spring tide. Affected by the strong asymmetry in the current velocity and SSC between the flood and ebb,suspended sediment flux during the ebb was notably larger than during the flood, and a seaward tidal net flux was observed in each tidal cycle. The balance of sediment flux illustrates that the seaward sediment transport was dominated by river flow and tidal trapping and the landward sediment transport was dominated by the Stokes drift and the shear effect. Notable resuspension occurred during the spring and moderate tides. The critical velocity for the resuspension of bed sediments was estimated based on the correlation between current velocity with SSC and suspended median grain size. The results show that the critical velocity was approximately 40 cm/s during the flood phases and approximately 80 cm/s during the ebb phases because the surficial flood bed sediments located in the lower reach are much finer than the surficial ebb bed sediments located in the upper reach. The flood-ebb variation in the critical erosion velocity has significant effect on the intratidal variation of SSC and sediment transport process, and it is a common phenomenon in many estuaries of the world due to the complicated spatial distribution of bed sediments.展开更多
Patterns of grain-size distributions of suspended sediment in relation to resuspension, settling, and tidal processes are investigated, based on in situ measurements over the Dafeng intertidal flat, on the Jiangsu coa...Patterns of grain-size distributions of suspended sediment in relation to resuspension, settling, and tidal processes are investigated, based on in situ measurements over the Dafeng intertidal flat, on the Jiangsu coast, in the summer of 2002 and 2003. The suspended sediment here is dominated by fine and very fine silt, with a mean grain-size of 7 - 13 μm. The patterns of the grainsize distributions of suspended sediment during a tidal cycle are characterized by two types: one stable type representing insignificant spatial and temperal variations; and the other bimedal type with significant variations. The main factors influencing the grainsize distributions include resnspension, settling, suspended sediment imported into intertidal flats during the flood phase, and the grain-size distribution of seabed sediment. Resuspension increases the coarse particle content, enhances the mean grain-size of suspended sediment, and results in grain-size distributions for the suspended sediment similar to those of seabed sediment; the settling process has opposite effects on the suspended sediment. When resuspension occurs, the gain-size distributions of suspended sediment in the lower part of water column respond significantly to the current velocity. Where the influence of resuspension and settling processes is weak, the grain-size distributions of suspended sediment appear to be stable and almost identical for the various parts of intertidal flats during different measurement periods. Such distributions are referred to the background grain-size distribution, for which the mean grain-size over the Dafeng intertidal flat is around 7 μm.展开更多
A MIDAS-400 customized data acquisi- tion system has been used for the high-resolution sediment dynamic measurements over the Dafeng intertidal flats of northern Jiangsu during 6 tidal cy- cles from July 3 to July 10,...A MIDAS-400 customized data acquisi- tion system has been used for the high-resolution sediment dynamic measurements over the Dafeng intertidal flats of northern Jiangsu during 6 tidal cy- cles from July 3 to July 10, 2003. The bed shear stress and bedload transport rates, in response to wave-current interactions, are calculated, which in- dicate that wind waves enhance the bottom shear stress and bedload transport rates. At the station for measurements, bedload transport was directed to seaward, with a sediment discharge of 30—150 kg·m?1 per tidal cycle. The surficial sediment samples were collected from a grid with 10 m spatial intervals over a rectangle 2×104 m2 experimental area, near the MIDAS-400 during the spring tide of July 4, 2003, and the neap tide of July 9, 2003. In addition, leveling survey was undertaken to obtain the detailed topog- raphy of the sampling area. Grain-size trend analysis of the sediment samples shows that the bedload transport patterns are complex, mainly controlled by the hydrodynamics and local geomorphology (e.g. tidal creeks) over the intertidal flats. Furthermore, the grain-size trends pattern during the neap tide rather than during the spring tide is consistent with the cal- culated bedload transport, and the grain-size trend vectors for the spring tide are larger than those forthe neap tide, indicating that the sampling thickness of surficial sediment during the neap tide may contain the information on the geomorphological evolution (or sediment deposition/erosion) from the spring to the neap tide.展开更多
基金The National Science Foundation of China under contract Nos 50939003 and 41176069the Foundation of State Key Laboratory of Estuarine and Coastal Research,East China Normal University of China under contract No.SKLEC-2012KYYW06
文摘Profles of tidal current and suspended sediment concentration (SSC) were measured in the North Branch of the Changjiang Estuary from neap tide to spring tide in April 2010. The measurement data were analyzed to determine the characteristics of intratidal and neap-spring variations of SSC and suspended sediment transport. Modulated by tidal range and current speed, the tidal mean SSC increased from 0.5 kg/m3 in neap tide to 3.5 kg/ma in spring tide. The intratidal variation of the depth-mean SSC can be summarized into three types: V-shape variation in neap tide, M-shape and mixed M-V shape variation in medium and spring tides. The occurrence of these variation types is controlled by the relative intensity and interaction of resuspension, settling and impact of water exchange from the rise and fall of tide. In neap tide the V-shape variation is mainly due to the dominant effect of the water exchange from the rise and fall of tide. During medium and spring tides, resuspension and settling processes become dominant. The interactions of these processes, together with the sustained high ebb current and shorter duration of low-tide slack, are respon- sible for the M-shape and M-V shape SSC variation. Weakly consolidated mud and high current speed cause significant resuspension and remarkable flood and ebb SSC peaks. Setting occurs at the slack water periods to cause SSC troughs and formation of a thin flufflayer on the bed. Fluxes of water and suspended sediment averaged over the neap-spring cycle are all seawards, but the magnitude and direction of tidal net sediment flux is highly variable.
基金The National Natural Science Foundation of China under contract Nos 41176069 and 48505350the Major State Basic Research Development Program of China under contract No.2013CB956502
文摘Time series measurements were conducted on suspended sediment and current velocity from neap tide to spring tide in the South Branch of the upper Changjiang Estuary in the summer of 2011. Strong flood-ebb asymmetry in the current velocity was observed in the South Branch as a result of high river runoff and tide deformation, in which the magnitude and duration of ebb currents were significantly greater than those of flood currents. The suspended sediment concentration(SSC) and suspended median grain size also exhibited remarkable flood-ebb variation; these variables were considerably larger during the ebb than during the flood and increased from neap to spring tide. Affected by the strong asymmetry in the current velocity and SSC between the flood and ebb,suspended sediment flux during the ebb was notably larger than during the flood, and a seaward tidal net flux was observed in each tidal cycle. The balance of sediment flux illustrates that the seaward sediment transport was dominated by river flow and tidal trapping and the landward sediment transport was dominated by the Stokes drift and the shear effect. Notable resuspension occurred during the spring and moderate tides. The critical velocity for the resuspension of bed sediments was estimated based on the correlation between current velocity with SSC and suspended median grain size. The results show that the critical velocity was approximately 40 cm/s during the flood phases and approximately 80 cm/s during the ebb phases because the surficial flood bed sediments located in the lower reach are much finer than the surficial ebb bed sediments located in the upper reach. The flood-ebb variation in the critical erosion velocity has significant effect on the intratidal variation of SSC and sediment transport process, and it is a common phenomenon in many estuaries of the world due to the complicated spatial distribution of bed sediments.
基金The study was supported by the National Natural Science Foundation of China under contract Nos 40231010 and 2002CB412408by the Post-doctoral Research Foundation of Shanghai under contract No.05R214119.
文摘Patterns of grain-size distributions of suspended sediment in relation to resuspension, settling, and tidal processes are investigated, based on in situ measurements over the Dafeng intertidal flat, on the Jiangsu coast, in the summer of 2002 and 2003. The suspended sediment here is dominated by fine and very fine silt, with a mean grain-size of 7 - 13 μm. The patterns of the grainsize distributions of suspended sediment during a tidal cycle are characterized by two types: one stable type representing insignificant spatial and temperal variations; and the other bimedal type with significant variations. The main factors influencing the grainsize distributions include resnspension, settling, suspended sediment imported into intertidal flats during the flood phase, and the grain-size distribution of seabed sediment. Resuspension increases the coarse particle content, enhances the mean grain-size of suspended sediment, and results in grain-size distributions for the suspended sediment similar to those of seabed sediment; the settling process has opposite effects on the suspended sediment. When resuspension occurs, the gain-size distributions of suspended sediment in the lower part of water column respond significantly to the current velocity. Where the influence of resuspension and settling processes is weak, the grain-size distributions of suspended sediment appear to be stable and almost identical for the various parts of intertidal flats during different measurement periods. Such distributions are referred to the background grain-size distribution, for which the mean grain-size over the Dafeng intertidal flat is around 7 μm.
基金The study was supported financially by the National Natural Science Foundation of China (Grant Nos. 40206006 and 40231010).
文摘A MIDAS-400 customized data acquisi- tion system has been used for the high-resolution sediment dynamic measurements over the Dafeng intertidal flats of northern Jiangsu during 6 tidal cy- cles from July 3 to July 10, 2003. The bed shear stress and bedload transport rates, in response to wave-current interactions, are calculated, which in- dicate that wind waves enhance the bottom shear stress and bedload transport rates. At the station for measurements, bedload transport was directed to seaward, with a sediment discharge of 30—150 kg·m?1 per tidal cycle. The surficial sediment samples were collected from a grid with 10 m spatial intervals over a rectangle 2×104 m2 experimental area, near the MIDAS-400 during the spring tide of July 4, 2003, and the neap tide of July 9, 2003. In addition, leveling survey was undertaken to obtain the detailed topog- raphy of the sampling area. Grain-size trend analysis of the sediment samples shows that the bedload transport patterns are complex, mainly controlled by the hydrodynamics and local geomorphology (e.g. tidal creeks) over the intertidal flats. Furthermore, the grain-size trends pattern during the neap tide rather than during the spring tide is consistent with the cal- culated bedload transport, and the grain-size trend vectors for the spring tide are larger than those forthe neap tide, indicating that the sampling thickness of surficial sediment during the neap tide may contain the information on the geomorphological evolution (or sediment deposition/erosion) from the spring to the neap tide.