Flow-slip damage commonly destabilizes coastal slopes.Finding a slope stabilization method for calcareous sands in the South China Sea is crucial.Microbially induced calcite precipitation is a promising,eco-friendly m...Flow-slip damage commonly destabilizes coastal slopes.Finding a slope stabilization method for calcareous sands in the South China Sea is crucial.Microbially induced calcite precipitation is a promising,eco-friendly method for soil stabilization.This study investigates the effect of microbial treatments,initial relative density,initial cell pressure,and initial stress ratio on the flow-slip stability of calcareous sand specimens by using constant shear drained tests.These tests lay the foundation to study the mechanical instability of sand slopes.Results show that the microbial-treated specimens maintain stable stresses longer,take longer to reach the instability,and withstand larger volumetric strains.Microbial treatment effectively enhances sand stability under constant shear drainage,with improvements amplified by higher initial relative density and initial cell pressure.In addition,a smaller initial stress ratio reduces shear effects on the specimen and increases resistance to flow slides.Microanalysis reveals that the flow-slip stability of calcareous sand slopes is enhanced by contact cementation,particle coating,void filling,and mutual embedment of calcium carbonate crystals.展开更多
The surface of carbon nanotubes(CNTs)was modified by plasma to improve the dispersion,conductivity and adsorption properties of carbon nanotubes.Cement-based composites made with plasmatreated carbon nanotubes(P-CNTs)...The surface of carbon nanotubes(CNTs)was modified by plasma to improve the dispersion,conductivity and adsorption properties of carbon nanotubes.Cement-based composites made with plasmatreated carbon nanotubes(P-CNTs)at different perntages were tested under repeated cyclic axial compressive stress by four electrode methods to measure the electric resistance.Those made with CNTs without plasma treatment as controls were tested also.The results showed that electric resistance change values of the cement mortar with P-CNT and CNT were all monatomic corresponding to the cyclic loading.When the water-cement ratio of the mortar was fixed,increasing of the P-CNT/CNT content would increase the resistance change value of the mortars added with P-CNT/CNT,and the sensitivity performance.It has certain engineering application value.展开更多
基金supported by the Taishan Scholars Program of Shandong Province,China(No.tsqn202306098)supported by the National Natural Science Foundations of China(No.52171282)the Shandong Provincial Key Research and Development Plan,China(No.2021ZLGX04).
文摘Flow-slip damage commonly destabilizes coastal slopes.Finding a slope stabilization method for calcareous sands in the South China Sea is crucial.Microbially induced calcite precipitation is a promising,eco-friendly method for soil stabilization.This study investigates the effect of microbial treatments,initial relative density,initial cell pressure,and initial stress ratio on the flow-slip stability of calcareous sand specimens by using constant shear drained tests.These tests lay the foundation to study the mechanical instability of sand slopes.Results show that the microbial-treated specimens maintain stable stresses longer,take longer to reach the instability,and withstand larger volumetric strains.Microbial treatment effectively enhances sand stability under constant shear drainage,with improvements amplified by higher initial relative density and initial cell pressure.In addition,a smaller initial stress ratio reduces shear effects on the specimen and increases resistance to flow slides.Microanalysis reveals that the flow-slip stability of calcareous sand slopes is enhanced by contact cementation,particle coating,void filling,and mutual embedment of calcium carbonate crystals.
基金Funded by National Natural Science Foundation of China(No.52178149)。
文摘The surface of carbon nanotubes(CNTs)was modified by plasma to improve the dispersion,conductivity and adsorption properties of carbon nanotubes.Cement-based composites made with plasmatreated carbon nanotubes(P-CNTs)at different perntages were tested under repeated cyclic axial compressive stress by four electrode methods to measure the electric resistance.Those made with CNTs without plasma treatment as controls were tested also.The results showed that electric resistance change values of the cement mortar with P-CNT and CNT were all monatomic corresponding to the cyclic loading.When the water-cement ratio of the mortar was fixed,increasing of the P-CNT/CNT content would increase the resistance change value of the mortars added with P-CNT/CNT,and the sensitivity performance.It has certain engineering application value.