The Bohai Sea is influenced by numerous extreme oceanic wave events in history.However,it is often difficult to determine the types of these events due to the lack of detailed historical records,causing uncertainty in...The Bohai Sea is influenced by numerous extreme oceanic wave events in history.However,it is often difficult to determine the types of these events due to the lack of detailed historical records,causing uncertainty in the reconstruction of historical coastal disasters.We investigated an anomalous sand layer in the Xiliyu Village by the coast of Laizhou Bay,Shandong,from which an extreme event deposit was identified using a multi-proxy approach including grain size distribution,geochemistry,and magnetic susceptibility.This event was dated 2700–3100 a bp,and caused inundation of a large coastal area of Laizhou Bay.By comparing historical records with instrumental data,we believe that the event deposit was generated by a severe storm surge with wind speed of>34.9 m/s.展开更多
The Fe-N-C material represents an attractive oxygen reduction reaction electrocatalyst,and the FeN_(4)moiety has been identified as a very competitive catalytic active site.Fine tuning of the coordination structure of...The Fe-N-C material represents an attractive oxygen reduction reaction electrocatalyst,and the FeN_(4)moiety has been identified as a very competitive catalytic active site.Fine tuning of the coordination structure of FeN_(4)has an essential impact on the catalytic performance.Herein,we construct a sulfur-modified Fe-N-C catalyst with controllable local coordination environment,where the Fe is coordinated with four in-plane N and an axial external S.The external S atom affects not only the electron distribution but also the spin state of Fe in the FeN_(4)active site.The appearance of higher valence states and spin states for Fe demonstrates the increase in unpaired electrons.With the above characteristics,the adsorption and desorption of the reactants at FeN_(4)active sites are optimized,thus promoting the oxygen reduction reaction activity.This work explores the key point in electronic configuration and coordination environment tuning of FeN_(4)through S doping and provides new insight into the construction of M-N-C-based oxygen reduction reaction catalysts.展开更多
Objective: Flexible ureteroscopy (fURS) has become a widely accepted and effective technique for treating kidney stones. With the development of new laser systems, the fURS approach has evolved significantly. This lit...Objective: Flexible ureteroscopy (fURS) has become a widely accepted and effective technique for treating kidney stones. With the development of new laser systems, the fURS approach has evolved significantly. This literature review aims to examine the current state of knowledge on fURS treatment of kidney stones, with a particular focus on the impact of the latest laser technologies on clinical outcomes and patient safety.Methods: We conducted a search of the PubMed/PMC, Web of Science Core Collection, Scopus, Embase (Ovid), and Cochrane Databases for all randomized controlled trial articles on laser lithotripsy in September 2023 without time restriction.Results: We found a total of 22 relevant pieces of literature. Holmium laser has been used for intracavitary laser lithotripsy for nearly 30 years and has become the golden standard for the treatment of urinary stones. However, the existing holmium laser cannot completely powder the stone, and the retropulsion of the stone after the laser emission and the thermal damage to the tissue have caused many problems for clinicians. The introduction of thulium fiber laser and Moses technology brings highly efficient dusting lithotripsy effect through laser innovation, limiting pulse energy and broadening pulse frequency.Conclusion: While the holmium:yttrium-aluminum-garnet laser remains the primary choice for endoscopic laser lithotripsy, recent technological advancements hint at a potential new gold standard. Parameter range, retropulsion effect, laser fiber adaptability, and overall system performance demand comprehensive attention. The ablation efficacy of high-pulse-frequency devices relies on precise targeting, which may pose practical challenges.展开更多
Chimeric antigen receptor T-cesll therapy(CAR–T)has achieved groundbreaking advancements in clinical application,ushering in a new era for innovative cancer treatment.However,the challenges associated with implementi...Chimeric antigen receptor T-cesll therapy(CAR–T)has achieved groundbreaking advancements in clinical application,ushering in a new era for innovative cancer treatment.However,the challenges associated with implementing this novel targeted cell therapy are increasingly significant.Particularly in the clinical management of solid tumors,obstacles such as the immunosuppressive effects of the tumor microenvironment,limited local tumor infiltration capability of CAR–T cells,heterogeneity of tumor targeting antigens,uncertainties surrounding CAR–T quality,control,and clinical adverse reactions have contributed to increased drug resistance and decreased compliance in tumor therapy.These factors have significantly impeded the widespread adoption and utilization of this therapeutic approach.In this paper,we comprehensively analyze recent preclinical and clinical reports on CAR–T therapy while summarizing crucial factors influencing its efficacy.Furthermore,we aim to identify existing solution strategies and explore their current research status.Through this review article,our objective is to broaden perspectives for further exploration into CAR–T therapy strategies and their clinical applications.展开更多
背景与目的肺大细胞神经内分泌癌(lung large cell neuroendocrine carcinoma,LCNEC)是一种罕见且预后极差的肺恶性肿瘤。目前对LCNEC的研究大多基于回顾性研究,缺乏现实世界的验证。本研究旨在识别独立的危险因素,建立并验证LCNEC预后...背景与目的肺大细胞神经内分泌癌(lung large cell neuroendocrine carcinoma,LCNEC)是一种罕见且预后极差的肺恶性肿瘤。目前对LCNEC的研究大多基于回顾性研究,缺乏现实世界的验证。本研究旨在识别独立的危险因素,建立并验证LCNEC预后的预测模型。方法从2010至2015年监测、流行病学和结果数据库(Surveillance,Epidemiology,and End Results,SEER)和我科2016至2020年住院患者中提取患者资料。采用Kaplan-Meier法评估总生存期(overall survival,OS)。OS被定义为患者从确诊到死亡或最后一次随访时间。单因素Cov回归分析和多因素Cox回归分析确定显著的预后因素。从而构建预测LCNEC预后的Nomogram。结果共纳入1892例LCNEC患者,分为训练队列(n=1288)和两个验证队列(n=552,n=52)。单因素Cox回归分析显示年龄、性别、肿瘤原发部位、偏侧、肿瘤原发灶-淋巴结-转移(tumor-node-metastasis,TNM)各分期、手术、放疗可影响LCNEC的预后(P<0.05),多因素Cox分析显示年龄、性别、肿瘤原发部位、T分期、N分期、M分期、手术、放疗是LCNEC患者预后的独立危险因素(P<0.05)。校准曲线和一致性指数(内部:0.744±0.015;外部:0.763±0.020、0.832±0.055)显示模型预测性能良好。结论年龄≥65岁、男性、TNM分期晚、未经过手术或放疗的患者预后不佳。列线图可以对患者的个性化临床决策提供一定的参考。展开更多
A lead-shielded HPGe detector and offlineγ-ray spectra of the residual product were used to measure the cross section(CS)and ratios of isomeric CS(σm/σg)in^(134)Xe(n,2n)^(133m),gXe reactions at different energies(1...A lead-shielded HPGe detector and offlineγ-ray spectra of the residual product were used to measure the cross section(CS)and ratios of isomeric CS(σm/σg)in^(134)Xe(n,2n)^(133m),gXe reactions at different energies(13.5 MeV,13.8 MeV,14.1 MeV,14.4 MeV,14.8 MeV)relative to the^(93)Nb(n,2n)^(92)mNb reaction CS.The target was high-purity natural Xe gas under high pressure.The T(d,n)4He reaction produces neutrons.TALYS code(version 1.95)for nuclear reactions was used for calculations,with default parameters and nuclear level density models.The uncertainties in the measured CS data were thoroughly analyzed using the covariance analysis method.The results were compared with theoretical values,evaluation data,and previous experimental findings.CS data of the 134Xe(n,2n)133mXe and 134Xe(n,2n)133gXe reactions and the corresponding isomeric CS ratios at 13.5 MeV,13.8 MeV,and 14.1 MeV neutron energies are reported for the first time.This research advances our knowledge of pre-equilibrium emission in the(n,2n)reaction channel by resolving inconsistencies in the Xe data.展开更多
Massive content delivery will become one of the most prominent tasks of future B5G/6G communication.However,various multimedia applications possess huge differences in terms of object oriented(i.e.,machine or user)and...Massive content delivery will become one of the most prominent tasks of future B5G/6G communication.However,various multimedia applications possess huge differences in terms of object oriented(i.e.,machine or user)and corresponding quality evaluation metric,which will significantly impact the design of encoding or decoding within content delivery strategy.To get over this dilemma,we firstly integrate the digital twin into the edge networks to accurately and timely capture Quality-of-Decision(QoD)or Quality-of-Experience(QoE)for the guidance of content delivery.Then,in terms of machinecentric communication,a QoD-driven compression mechanism is designed for video analytics via temporally lightweight frame classification and spatially uneven quality assignment,which can achieve a balance among decision-making,delivered content,and encoding latency.Finally,in terms of user-centric communication,by fully leveraging haptic physical properties and semantic correlations of heterogeneous streams,we develop a QoE-driven video enhancement scheme to supply high data fidelity.Numerical results demonstrate the remarkable performance improvement of massive content delivery.展开更多
Developing efficient oxygen reduction reaction(ORR)catalyst is essential for the practical application of Zn-air batteries(ZABs).In this contribution,we develop a novel zeolitic imidazolate framework(ZIF)-mediated str...Developing efficient oxygen reduction reaction(ORR)catalyst is essential for the practical application of Zn-air batteries(ZABs).In this contribution,we develop a novel zeolitic imidazolate framework(ZIF)-mediated strategy to anchor Co species on N-doped carbon nanorods for efficient ORR.Featuring ultrahigh N-doping(10.29 at.%),monodisperse Co nanocrystal decoration,and well-dispersed Co-N_(x)functionalization,the obtained Co-decorated N-doped carbon nanorods(Co@NCNR)exhibit a decent ORR performance comparable to commercial Pt/C in alkaline media.Aqueous ZABs have been assembled using Co@NCNR as the cathode catalyst.The assembled ZABs manifest high initial open-circuit voltage as well as high energy density.In addition,the Co@NCNR also demonstrates ideal ORR performance in quasi-solid-state ZABs.展开更多
In order to solve the problem of poor fusion between the spots of deformation camouflage and the background,a small-spot deformation camouflage design algorithm based on background texture matching is proposed in this...In order to solve the problem of poor fusion between the spots of deformation camouflage and the background,a small-spot deformation camouflage design algorithm based on background texture matching is proposed in this research.The combination of spots and textures improved the fusion of the spot pattern and the background.An adversarial autoencoder convolutional network was designed to extract background texture features.The image adversarial loss was added and the reconstruction loss was improved to improve the clarity of the generated texture pattern and the generalization ability of the model.The digital camouflage was formed by obtaining the mean value of the square area and replacing the main color.At the same time,the spots in the square area with a side length of 2 s were subjected to simple linear iterative clustering to form irregular small-spot camouflage.A dataset with a scale of 1050 was established in the experiment.The training results of three different loss functions were investigated.The results showed that the proposed loss function could enhance the generalization of the model and improve the quality of the generated texture image.A variety of digital camouflages with main colors and irregular small-spot camouflage were generated,and their efficiency was tested.On the one hand,intuitive evaluation was given by personnel observing the camouflage pattern embedded in the background and its contour map calculated by the canny operator.On the other hand,objective comparison result was formed by calculating the 4 evaluation indexes between the camouflage pattern and the background.Both results showed that the generated pattern had a high degree of fusion with the background.This model could balance the relationship between the spot size,the number of main colors and the actual effect according to actual needs.展开更多
In a Dirac semimetal, the massless Dirac fermion has zero chirality, leading to surface states connected adiabatically to a topologically trivial surface state as well as vanishing anomalous Hall effect. Recently, it ...In a Dirac semimetal, the massless Dirac fermion has zero chirality, leading to surface states connected adiabatically to a topologically trivial surface state as well as vanishing anomalous Hall effect. Recently, it is predicted that in the nonrelativistic limit of certain collinear antiferromagnets, there exists a type of chiral“Dirac-like” fermion, whose dispersion manifests four-fold degenerate crossing points formed by spin-degenerate linear bands, with topologically protected Fermi arcs. Such an unconventional chiral fermion, protected by a hidden SU(2) symmetry in the hierarchy of an enhanced crystallographic group, namely spin space group, is not experimentally verified yet. Here, by angle-resolved photoemission spectroscopy measurements, we reveal the surface origin of the electron pocket at the Fermi surface in collinear antiferromagnet CoNb3S6. Combining with neutron diffraction and first-principles calculations, we suggest a multidomain collinear antiferromagnetic configuration, rendering the the existence of the Fermi-arc surface states induced by chiral Dirac-like fermions.Our work provides spectral evidence of the chiral Dirac-like fermion caused by particular spin symmetry in CoNb_(3)S_(6), paving an avenue for exploring new emergent phenomena in antiferromagnets with unconventional quasiparticle excitations.展开更多
Attributing to the high specific capacity and low electrochemical reduction potential,lithium(Li)metal is regarded as the most promising anode for high-energy Li batteries.However,the growth of lithium dendrites and h...Attributing to the high specific capacity and low electrochemical reduction potential,lithium(Li)metal is regarded as the most promising anode for high-energy Li batteries.However,the growth of lithium dendrites and huge volume change seriously limit the development of lithium metal batteries.To overcome these challenges,an ordered mesoporous N-doped carbon with lithiophilic single atoms is proposed to induce uniform nucleation and deposition of Li metal.Benefiting from the synergistic effects of interconnected three-dimensional ordered mesoporous structures and abundant lithiophilic single-atom sites,regulated local current density and rapid mass transfer can be achieved,leading to the uniform Li deposition with inhibition of dendrites and buffered volume expansion.As a result,the as-fabricated anode exhibits a high CE of 99.8%for 200 cycles.A stable voltage hysteresis of 14 mV at 5 mA cm^(−2)could be maintained for more than 1330 h in the symmetric cell.Furthermore,the full cell coupled with commercial LiFePO_(4)exhibits high reversible capacity of 108 mAh g^(−1)and average Coulombic efficiency of 99.8%from 5th to 350th cycles at 1 C.The ordered mesoporous carbon host with abundant lithiophilic single-atom sites delivers new inspirations into rational design of high-performance Li metal anodes.展开更多
An experimental study was conducted to investigate the properties of stratified regular or wavy two-phase flow in two parallel separators located after a manifold.A total of 103 experiments with various gas and liquid...An experimental study was conducted to investigate the properties of stratified regular or wavy two-phase flow in two parallel separators located after a manifold.A total of 103 experiments with various gas and liquid velocity combinations in three inlet pipes were conducted,including 77 groups of outlet pipe resistance symmetry and 26 groups of outlet pipe resistance asymmetry trials.The experimental results have revealed that when the gas-liquid flow rate is low,the degree of uneven splitting is high,and“extreme”conditions are attained.When the superficial gas velocity is greater than that established in the extreme case,the direction of the liquid-phase displacement is reversed,while that of the gas remains unchanged.Thus,the degree of gas phase bias tends to be mitigated with an increase in the gas velocity,while the uneven splitting degree of liquid approaches 10%.Finally,varying the gas-phase outlet pipe resistance is shown to effectively change the gas-liquid two-phase flow distribution.展开更多
基金Supported by the National Natural Science Foundation of China(Nos.41706096,41530962,41771218)the Research Start-up Project of Jiangsu Normal University(No.19XSRX006)the Opening Foundation of Hainan Key Laboratory of Marine Geological Resources and Environment(No.HNHYDZZYHJKF005)。
文摘The Bohai Sea is influenced by numerous extreme oceanic wave events in history.However,it is often difficult to determine the types of these events due to the lack of detailed historical records,causing uncertainty in the reconstruction of historical coastal disasters.We investigated an anomalous sand layer in the Xiliyu Village by the coast of Laizhou Bay,Shandong,from which an extreme event deposit was identified using a multi-proxy approach including grain size distribution,geochemistry,and magnetic susceptibility.This event was dated 2700–3100 a bp,and caused inundation of a large coastal area of Laizhou Bay.By comparing historical records with instrumental data,we believe that the event deposit was generated by a severe storm surge with wind speed of>34.9 m/s.
基金supported by the National Key Research and Development Program of China(Grant No.2020YFA0715000)the National Natural Science Foundation of China(Grant No.52127816)+2 种基金supported by the U.S.Department of Energy(DOE),Office of Energy Efficiency and Renewable Energy,Vehicle Technologies Officethe DOE Office of Science by UChicago Argonne LLC under contract no.DE-AC02-06CH11357the Advanced Photon Source(APS),a U.S.Department of Energy(DOE)Office of Science User Facility,operated for the DOE Office of Science by Argonne National Laboratory under Contract No.DE-AC02-06CH11357
文摘The Fe-N-C material represents an attractive oxygen reduction reaction electrocatalyst,and the FeN_(4)moiety has been identified as a very competitive catalytic active site.Fine tuning of the coordination structure of FeN_(4)has an essential impact on the catalytic performance.Herein,we construct a sulfur-modified Fe-N-C catalyst with controllable local coordination environment,where the Fe is coordinated with four in-plane N and an axial external S.The external S atom affects not only the electron distribution but also the spin state of Fe in the FeN_(4)active site.The appearance of higher valence states and spin states for Fe demonstrates the increase in unpaired electrons.With the above characteristics,the adsorption and desorption of the reactants at FeN_(4)active sites are optimized,thus promoting the oxygen reduction reaction activity.This work explores the key point in electronic configuration and coordination environment tuning of FeN_(4)through S doping and provides new insight into the construction of M-N-C-based oxygen reduction reaction catalysts.
基金supported by the 1.3.5 Project for Disciplines of Excellence,West China Hospital,Sichuan University(Grant No.ZYGD18011 and No.ZYJC18015 to Wang K).
文摘Objective: Flexible ureteroscopy (fURS) has become a widely accepted and effective technique for treating kidney stones. With the development of new laser systems, the fURS approach has evolved significantly. This literature review aims to examine the current state of knowledge on fURS treatment of kidney stones, with a particular focus on the impact of the latest laser technologies on clinical outcomes and patient safety.Methods: We conducted a search of the PubMed/PMC, Web of Science Core Collection, Scopus, Embase (Ovid), and Cochrane Databases for all randomized controlled trial articles on laser lithotripsy in September 2023 without time restriction.Results: We found a total of 22 relevant pieces of literature. Holmium laser has been used for intracavitary laser lithotripsy for nearly 30 years and has become the golden standard for the treatment of urinary stones. However, the existing holmium laser cannot completely powder the stone, and the retropulsion of the stone after the laser emission and the thermal damage to the tissue have caused many problems for clinicians. The introduction of thulium fiber laser and Moses technology brings highly efficient dusting lithotripsy effect through laser innovation, limiting pulse energy and broadening pulse frequency.Conclusion: While the holmium:yttrium-aluminum-garnet laser remains the primary choice for endoscopic laser lithotripsy, recent technological advancements hint at a potential new gold standard. Parameter range, retropulsion effect, laser fiber adaptability, and overall system performance demand comprehensive attention. The ablation efficacy of high-pulse-frequency devices relies on precise targeting, which may pose practical challenges.
基金funded by 2023 Sichuan Scientific and Technological Achievements Transformation Project.Project Number:2023JDZH0024.
文摘Chimeric antigen receptor T-cesll therapy(CAR–T)has achieved groundbreaking advancements in clinical application,ushering in a new era for innovative cancer treatment.However,the challenges associated with implementing this novel targeted cell therapy are increasingly significant.Particularly in the clinical management of solid tumors,obstacles such as the immunosuppressive effects of the tumor microenvironment,limited local tumor infiltration capability of CAR–T cells,heterogeneity of tumor targeting antigens,uncertainties surrounding CAR–T quality,control,and clinical adverse reactions have contributed to increased drug resistance and decreased compliance in tumor therapy.These factors have significantly impeded the widespread adoption and utilization of this therapeutic approach.In this paper,we comprehensively analyze recent preclinical and clinical reports on CAR–T therapy while summarizing crucial factors influencing its efficacy.Furthermore,we aim to identify existing solution strategies and explore their current research status.Through this review article,our objective is to broaden perspectives for further exploration into CAR–T therapy strategies and their clinical applications.
文摘背景与目的肺大细胞神经内分泌癌(lung large cell neuroendocrine carcinoma,LCNEC)是一种罕见且预后极差的肺恶性肿瘤。目前对LCNEC的研究大多基于回顾性研究,缺乏现实世界的验证。本研究旨在识别独立的危险因素,建立并验证LCNEC预后的预测模型。方法从2010至2015年监测、流行病学和结果数据库(Surveillance,Epidemiology,and End Results,SEER)和我科2016至2020年住院患者中提取患者资料。采用Kaplan-Meier法评估总生存期(overall survival,OS)。OS被定义为患者从确诊到死亡或最后一次随访时间。单因素Cov回归分析和多因素Cox回归分析确定显著的预后因素。从而构建预测LCNEC预后的Nomogram。结果共纳入1892例LCNEC患者,分为训练队列(n=1288)和两个验证队列(n=552,n=52)。单因素Cox回归分析显示年龄、性别、肿瘤原发部位、偏侧、肿瘤原发灶-淋巴结-转移(tumor-node-metastasis,TNM)各分期、手术、放疗可影响LCNEC的预后(P<0.05),多因素Cox分析显示年龄、性别、肿瘤原发部位、T分期、N分期、M分期、手术、放疗是LCNEC患者预后的独立危险因素(P<0.05)。校准曲线和一致性指数(内部:0.744±0.015;外部:0.763±0.020、0.832±0.055)显示模型预测性能良好。结论年龄≥65岁、男性、TNM分期晚、未经过手术或放疗的患者预后不佳。列线图可以对患者的个性化临床决策提供一定的参考。
基金supported by the National Natural science Foundation of China(Nos.11875016,12165006).
文摘A lead-shielded HPGe detector and offlineγ-ray spectra of the residual product were used to measure the cross section(CS)and ratios of isomeric CS(σm/σg)in^(134)Xe(n,2n)^(133m),gXe reactions at different energies(13.5 MeV,13.8 MeV,14.1 MeV,14.4 MeV,14.8 MeV)relative to the^(93)Nb(n,2n)^(92)mNb reaction CS.The target was high-purity natural Xe gas under high pressure.The T(d,n)4He reaction produces neutrons.TALYS code(version 1.95)for nuclear reactions was used for calculations,with default parameters and nuclear level density models.The uncertainties in the measured CS data were thoroughly analyzed using the covariance analysis method.The results were compared with theoretical values,evaluation data,and previous experimental findings.CS data of the 134Xe(n,2n)133mXe and 134Xe(n,2n)133gXe reactions and the corresponding isomeric CS ratios at 13.5 MeV,13.8 MeV,and 14.1 MeV neutron energies are reported for the first time.This research advances our knowledge of pre-equilibrium emission in the(n,2n)reaction channel by resolving inconsistencies in the Xe data.
基金partly supported by the National Natural Science Foundation of China (Grants No.62231017 and No.62071254)the Priority Academic Program Development of Jiangsu Higher Education Institutions。
文摘Massive content delivery will become one of the most prominent tasks of future B5G/6G communication.However,various multimedia applications possess huge differences in terms of object oriented(i.e.,machine or user)and corresponding quality evaluation metric,which will significantly impact the design of encoding or decoding within content delivery strategy.To get over this dilemma,we firstly integrate the digital twin into the edge networks to accurately and timely capture Quality-of-Decision(QoD)or Quality-of-Experience(QoE)for the guidance of content delivery.Then,in terms of machinecentric communication,a QoD-driven compression mechanism is designed for video analytics via temporally lightweight frame classification and spatially uneven quality assignment,which can achieve a balance among decision-making,delivered content,and encoding latency.Finally,in terms of user-centric communication,by fully leveraging haptic physical properties and semantic correlations of heterogeneous streams,we develop a QoE-driven video enhancement scheme to supply high data fidelity.Numerical results demonstrate the remarkable performance improvement of massive content delivery.
基金supported by the National Natural Science Foundation of China(52072283)the National Key Research and Development Program of China(2020YFA0715000)+1 种基金Shenzhen Fundamental Research Program(JCYJ20190809114409397)supported by the Fundamental Research Funds for the Central Universities(WUT:2021III016GX).
文摘Developing efficient oxygen reduction reaction(ORR)catalyst is essential for the practical application of Zn-air batteries(ZABs).In this contribution,we develop a novel zeolitic imidazolate framework(ZIF)-mediated strategy to anchor Co species on N-doped carbon nanorods for efficient ORR.Featuring ultrahigh N-doping(10.29 at.%),monodisperse Co nanocrystal decoration,and well-dispersed Co-N_(x)functionalization,the obtained Co-decorated N-doped carbon nanorods(Co@NCNR)exhibit a decent ORR performance comparable to commercial Pt/C in alkaline media.Aqueous ZABs have been assembled using Co@NCNR as the cathode catalyst.The assembled ZABs manifest high initial open-circuit voltage as well as high energy density.In addition,the Co@NCNR also demonstrates ideal ORR performance in quasi-solid-state ZABs.
基金funded by Natural Science Foundation of Jiangsu Province,China,grant number is BK20180579。
文摘In order to solve the problem of poor fusion between the spots of deformation camouflage and the background,a small-spot deformation camouflage design algorithm based on background texture matching is proposed in this research.The combination of spots and textures improved the fusion of the spot pattern and the background.An adversarial autoencoder convolutional network was designed to extract background texture features.The image adversarial loss was added and the reconstruction loss was improved to improve the clarity of the generated texture pattern and the generalization ability of the model.The digital camouflage was formed by obtaining the mean value of the square area and replacing the main color.At the same time,the spots in the square area with a side length of 2 s were subjected to simple linear iterative clustering to form irregular small-spot camouflage.A dataset with a scale of 1050 was established in the experiment.The training results of three different loss functions were investigated.The results showed that the proposed loss function could enhance the generalization of the model and improve the quality of the generated texture image.A variety of digital camouflages with main colors and irregular small-spot camouflage were generated,and their efficiency was tested.On the one hand,intuitive evaluation was given by personnel observing the camouflage pattern embedded in the background and its contour map calculated by the canny operator.On the other hand,objective comparison result was formed by calculating the 4 evaluation indexes between the camouflage pattern and the background.Both results showed that the generated pattern had a high degree of fusion with the background.This model could balance the relationship between the spot size,the number of main colors and the actual effect according to actual needs.
基金supported by the National Key R&D Program of China (Grant Nos. 2020YFA0308900 and 2022YFA1403700)the National Natural Science Foundation of China (Grant Nos. 12074163, 12134020, 11974157, 12104255, 12004159, and 12374146)+8 种基金Guangdong Provincial Key Laboratory for Computational Science and Material Design (Grant No. 2019B030301001)the Science, Technology and Innovation Commission of Shenzhen Municipality (Grant Nos. ZDSYS20190902092905285 and KQTD20190929173815000)Guangdong Basic and Applied Basic Research Foundation (Grant Nos. 2022B1515020046, 2021B1515130007, 2022A1515011915, 2019A1515110712, and 2022B1515130005)Shenzhen Science and Technology Program (Grant Nos. RCJC20221008092722009 and RCBS20210706092218039)the Guangdong Innovative and Entrepreneurial Research Team Program (Grant No. 2019ZT08C044)the beam time awarded by Australia’s Nuclear Science and Technology Organisation (ANSTO) (Grant No. P8130)the Materials and Life Science Experimental Facility of the Japan Proton Accelerator Research Complex (J-PARC) was performed under a user program (Proposal No. 2019B0140)performed at the Hiroshima Synchrotron Radiation Center (HiSOR) of Japan (Grant Nos. 22BG023 and 22BG029)Shanghai Synchrotron Radiation Facility (SSRF) BL03U (Grant No. 2022-SSRF-PT-020848)。
文摘In a Dirac semimetal, the massless Dirac fermion has zero chirality, leading to surface states connected adiabatically to a topologically trivial surface state as well as vanishing anomalous Hall effect. Recently, it is predicted that in the nonrelativistic limit of certain collinear antiferromagnets, there exists a type of chiral“Dirac-like” fermion, whose dispersion manifests four-fold degenerate crossing points formed by spin-degenerate linear bands, with topologically protected Fermi arcs. Such an unconventional chiral fermion, protected by a hidden SU(2) symmetry in the hierarchy of an enhanced crystallographic group, namely spin space group, is not experimentally verified yet. Here, by angle-resolved photoemission spectroscopy measurements, we reveal the surface origin of the electron pocket at the Fermi surface in collinear antiferromagnet CoNb3S6. Combining with neutron diffraction and first-principles calculations, we suggest a multidomain collinear antiferromagnetic configuration, rendering the the existence of the Fermi-arc surface states induced by chiral Dirac-like fermions.Our work provides spectral evidence of the chiral Dirac-like fermion caused by particular spin symmetry in CoNb_(3)S_(6), paving an avenue for exploring new emergent phenomena in antiferromagnets with unconventional quasiparticle excitations.
基金supported by the National Key Research and Development Program of China(2020YFA0715000)the National Natural Science Foundation of China(51832004,52127816)+2 种基金the Programme of Introducing Talents of Discipline to Universities(B17034)China,Foshan Xianhu Laboratory of the Advanced Energy Science,China and Technology Guangdong Laboratory(XHT2020-003)the project supported by State Key Laboratory of Advanced Technology for Materials Synthesis and Processing(WUT:2022-KF-5).
文摘Attributing to the high specific capacity and low electrochemical reduction potential,lithium(Li)metal is regarded as the most promising anode for high-energy Li batteries.However,the growth of lithium dendrites and huge volume change seriously limit the development of lithium metal batteries.To overcome these challenges,an ordered mesoporous N-doped carbon with lithiophilic single atoms is proposed to induce uniform nucleation and deposition of Li metal.Benefiting from the synergistic effects of interconnected three-dimensional ordered mesoporous structures and abundant lithiophilic single-atom sites,regulated local current density and rapid mass transfer can be achieved,leading to the uniform Li deposition with inhibition of dendrites and buffered volume expansion.As a result,the as-fabricated anode exhibits a high CE of 99.8%for 200 cycles.A stable voltage hysteresis of 14 mV at 5 mA cm^(−2)could be maintained for more than 1330 h in the symmetric cell.Furthermore,the full cell coupled with commercial LiFePO_(4)exhibits high reversible capacity of 108 mAh g^(−1)and average Coulombic efficiency of 99.8%from 5th to 350th cycles at 1 C.The ordered mesoporous carbon host with abundant lithiophilic single-atom sites delivers new inspirations into rational design of high-performance Li metal anodes.
基金supported by the National Science and Technology Major Project of China(No.2016ZX05028-004-003).
文摘An experimental study was conducted to investigate the properties of stratified regular or wavy two-phase flow in two parallel separators located after a manifold.A total of 103 experiments with various gas and liquid velocity combinations in three inlet pipes were conducted,including 77 groups of outlet pipe resistance symmetry and 26 groups of outlet pipe resistance asymmetry trials.The experimental results have revealed that when the gas-liquid flow rate is low,the degree of uneven splitting is high,and“extreme”conditions are attained.When the superficial gas velocity is greater than that established in the extreme case,the direction of the liquid-phase displacement is reversed,while that of the gas remains unchanged.Thus,the degree of gas phase bias tends to be mitigated with an increase in the gas velocity,while the uneven splitting degree of liquid approaches 10%.Finally,varying the gas-phase outlet pipe resistance is shown to effectively change the gas-liquid two-phase flow distribution.