Objective:Circular RNAs(circRNAs)have been shown to involve in pathological processes of ischemic stroke(IS),including autophagy.This study was designed to explore the effect of circR-ZC3HC1 on neuronal autophagy in I...Objective:Circular RNAs(circRNAs)have been shown to involve in pathological processes of ischemic stroke(IS),including autophagy.This study was designed to explore the effect of circR-ZC3HC1 on neuronal autophagy in IS and the related mechanisms.Methods:Expression of circR-ZC3HC1 in blood samples of IS patients and healthy controls was detected.Hippocampal neurons were treated with oxygen and glucose deprivation(OGD)to establish IS in vitro model.The expression of LC3 and p62 and the number of autophagosomes were examined to evaluate the autophagy level of OGD induced neurons using western blotting and transmission electron microscope.Cell apoptosis rate and the expression of cleaved caspase-3,Bax,and Bcl-2 were assessed byflow cytometry and western blotting.The binding relationships among circR-ZC3HC1,miR-384-5p,and SIRT1 were predicted and verified.Results:Low expression of circR-ZC3HC1 was found in blood samples of IS patients and OGD-treated neurons.Overexpressed circR-ZC3HC1 or inhibited miR-384-5p expression promoted autophagy and inhibited apoptosis of OGD-treated neurons,which could be reversed by further 3-MA treatment.Mechanistically,circR-ZC3HC1 targeted miR-384-5p to mediate SIRT1 expression.miR-384-5p overexpression or SIRT1 knockdown in the presence of circR-ZC3HC1 overexpression in OGD-treated neurons lead to reduced autophagy and enhanced apoptosis.Conclusion:Collectively,circR-ZC3HC1 promoted neuronal autophagy to attenuate IS via miR-384-5p/SIRT1 axis.展开更多
A numerical physio-chemical model of the NO_(x)-O_(3) photochemical cycle in the near-wake region of an isolated residential/office building has been presented in this study.The investigation delves into the dispersio...A numerical physio-chemical model of the NO_(x)-O_(3) photochemical cycle in the near-wake region of an isolated residential/office building has been presented in this study.The investigation delves into the dispersion of reactive air pollutants through the lens of fluid phenomenology and its impact on chemical reactivity,formation,transport,deposition,and removal.Computational fluid dynamics(CFD)simulations were conducted for the ground-point-source(GES)and roof-pointsource(RES)scenarios.Results show that the Damköhler number(Da),which quantifies pollutants’physio-chemical timescales,displays a strong inverse proportionality with the magnitude and spread of NO–increasing Da reduces human exposure to the toxic NO and NO_(2) substantially.When different wind directions were considered,the dispersion range of NO exhibited varying shrinking directions as Da increased.Furthermore,as Da increases,the concentration ratio KNO_(2)/KNO_(x),which quantifies the production of NO_(2) resulting from NO depletion,forms sharp high-low gradients near emission sources.For GES,the dispersion pattern is governed by the fluid’s phenomenological features.For RES,the intoxicated area emanates from the building’s leading-edge,with the lack of shielding inhibiting pollutant interactions in the near-wake,resulting in scant physio-chemical coupling.The NO_(2)/NO_(x) distribution follows a self-similar,stratified pattern,exhibiting consistent layering gradients and attributing to the natural deposition of the already-reacted pollutants rather than in-situ reactions.In the end,building design guidelines have been proposed to reduce pedestrian and resident exposure to NO_(x)-O_(3).展开更多
In the Canadian north,the cost of space heating is very high due to the harsh weather,its remoteness,lack of transportation,and dependency on the high cost of fossil fuel imported from the South.Since the North has an...In the Canadian north,the cost of space heating is very high due to the harsh weather,its remoteness,lack of transportation,and dependency on the high cost of fossil fuel imported from the South.Since the North has an abundance of solar energy,significant energy savings with some added construction cost in houses could be achieved by applying high-performance building envelopes and solar design strategies.The objective of this paper is to investigate the potential of both passive and active solar design strategies in improving the energy efficiency of northern housing.Firstly,a reference house representing a typical single-family home in the North is modeled using EnergyPlus,and the key passive design parameters are optimized to minimize life-cycle cost.Then,the air-based building integrated photovoltaic/thermal(BIPV/T)system is applied to the optimized house and integrated with HVAC systems.It is found that optimal passive solar design can reduce the heating energy demand by 42%with an incremental cost of 8%for Yellowknife and by 27%without incurring an incremental cost for Kuujjuaq.Integrating BIPV/T with HVAC systems can reduce the defrost time of heat recovery ventilator(HRV),extend the working hours and improve the COP of air source heat pump(ASHP).The reduction in the total energy consumption is in the range of 1,4%-3.0%by integrating HRV and 0.3%-0.6%by integrating ASHP due to the mis-match of solar availability and heating energy demand.To maximize the utilization of solar energy available,the optimal use of thermal energy recovered from BIPV/T system in northern housing requires further investigation.展开更多
Physiological modeling is important to evaluate the effects of heat and cold conditions on people’s thermal comfort and health. Experimental studies have found that older people (above 65 year old) undergo age-relate...Physiological modeling is important to evaluate the effects of heat and cold conditions on people’s thermal comfort and health. Experimental studies have found that older people (above 65 year old) undergo age-related weakening changes in their physiology and thermoregulatory activities, which makes them more vulnerable to heat or cold exposure than average aged young adults. However, addressing the age-related changes by modeling has been challenging due to their wide variability among the older population. This study develops a two-node physiological model to predict the thermal response of older people. The model is built on a newly developed two-node model for average-age young adults by accounting for the age-related attenuation of thermoregulation and sensory delays in triggering thermoregulatory actions. A numerical optimization method is developed to compute the model parameter values based on selected benchmark data from the literature. The proposed model is further validated with published measurement data covering large input ranges. The model predictions are in good agreement with the measurements in hot and cold exposure conditions with a discrepancy 0.60 °C for the mean skin temperature and of 0.30 °C for the core temperature. The proposed model can be integrated into building simulation tools to predict heat and cold stress levels and the associated thermal comfort for older people in built environments.展开更多
基金Supported by Ningbo Health Technology Project,Nos.2020Y12 and 2022Y12.
文摘Objective:Circular RNAs(circRNAs)have been shown to involve in pathological processes of ischemic stroke(IS),including autophagy.This study was designed to explore the effect of circR-ZC3HC1 on neuronal autophagy in IS and the related mechanisms.Methods:Expression of circR-ZC3HC1 in blood samples of IS patients and healthy controls was detected.Hippocampal neurons were treated with oxygen and glucose deprivation(OGD)to establish IS in vitro model.The expression of LC3 and p62 and the number of autophagosomes were examined to evaluate the autophagy level of OGD induced neurons using western blotting and transmission electron microscope.Cell apoptosis rate and the expression of cleaved caspase-3,Bax,and Bcl-2 were assessed byflow cytometry and western blotting.The binding relationships among circR-ZC3HC1,miR-384-5p,and SIRT1 were predicted and verified.Results:Low expression of circR-ZC3HC1 was found in blood samples of IS patients and OGD-treated neurons.Overexpressed circR-ZC3HC1 or inhibited miR-384-5p expression promoted autophagy and inhibited apoptosis of OGD-treated neurons,which could be reversed by further 3-MA treatment.Mechanistically,circR-ZC3HC1 targeted miR-384-5p to mediate SIRT1 expression.miR-384-5p overexpression or SIRT1 knockdown in the presence of circR-ZC3HC1 overexpression in OGD-treated neurons lead to reduced autophagy and enhanced apoptosis.Conclusion:Collectively,circR-ZC3HC1 promoted neuronal autophagy to attenuate IS via miR-384-5p/SIRT1 axis.
基金The work described in this paper was supported by the Research Grants Council of the Hong Kong Special Administrative Region,China(Project No.C7064-18G)Research Grants Council of the Hong Kong Special Administrative Region,China(Project No.16207118 and No.16211821)+2 种基金This work is also partly supported by the Natural Science Foundation of Chongqing,China(Project No.cstc2019jcyj-msxmX0565 and No.cstc2020jcyj-msxmX0921)the Key Project of Technological Innovation and Application Development in Chongqing(Project No.cstc2019jscxgksbX0017)the Innovation Group Project of Southern Marine Science and Engineering Guangdong Laboratory(Project No.311020001).
文摘A numerical physio-chemical model of the NO_(x)-O_(3) photochemical cycle in the near-wake region of an isolated residential/office building has been presented in this study.The investigation delves into the dispersion of reactive air pollutants through the lens of fluid phenomenology and its impact on chemical reactivity,formation,transport,deposition,and removal.Computational fluid dynamics(CFD)simulations were conducted for the ground-point-source(GES)and roof-pointsource(RES)scenarios.Results show that the Damköhler number(Da),which quantifies pollutants’physio-chemical timescales,displays a strong inverse proportionality with the magnitude and spread of NO–increasing Da reduces human exposure to the toxic NO and NO_(2) substantially.When different wind directions were considered,the dispersion range of NO exhibited varying shrinking directions as Da increased.Furthermore,as Da increases,the concentration ratio KNO_(2)/KNO_(x),which quantifies the production of NO_(2) resulting from NO depletion,forms sharp high-low gradients near emission sources.For GES,the dispersion pattern is governed by the fluid’s phenomenological features.For RES,the intoxicated area emanates from the building’s leading-edge,with the lack of shielding inhibiting pollutant interactions in the near-wake,resulting in scant physio-chemical coupling.The NO_(2)/NO_(x) distribution follows a self-similar,stratified pattern,exhibiting consistent layering gradients and attributing to the natural deposition of the already-reacted pollutants rather than in-situ reactions.In the end,building design guidelines have been proposed to reduce pedestrian and resident exposure to NO_(x)-O_(3).
基金the financial supports received from The Fonds de recherche du Quebec Nature et technologies(FRQNT)(No.2019-PR-254829)Gina Cody School of Engineering and Computer Science at Concordia University.
文摘In the Canadian north,the cost of space heating is very high due to the harsh weather,its remoteness,lack of transportation,and dependency on the high cost of fossil fuel imported from the South.Since the North has an abundance of solar energy,significant energy savings with some added construction cost in houses could be achieved by applying high-performance building envelopes and solar design strategies.The objective of this paper is to investigate the potential of both passive and active solar design strategies in improving the energy efficiency of northern housing.Firstly,a reference house representing a typical single-family home in the North is modeled using EnergyPlus,and the key passive design parameters are optimized to minimize life-cycle cost.Then,the air-based building integrated photovoltaic/thermal(BIPV/T)system is applied to the optimized house and integrated with HVAC systems.It is found that optimal passive solar design can reduce the heating energy demand by 42%with an incremental cost of 8%for Yellowknife and by 27%without incurring an incremental cost for Kuujjuaq.Integrating BIPV/T with HVAC systems can reduce the defrost time of heat recovery ventilator(HRV),extend the working hours and improve the COP of air source heat pump(ASHP).The reduction in the total energy consumption is in the range of 1,4%-3.0%by integrating HRV and 0.3%-0.6%by integrating ASHP due to the mis-match of solar availability and heating energy demand.To maximize the utilization of solar energy available,the optimal use of thermal energy recovered from BIPV/T system in northern housing requires further investigation.
基金supported by the Natural Sciences and Engineering Research Council of Canada(NSERC)through the Discovery Grants Program[#RGPIN-2018-06734]the Advancing Climate Change Science in Canada Program[#ACCPJ 535986-18]the Construction Research Centre of the National Research Council of Canada through funding from Infrastructure Canada in support of the Pan Canadian Framework on Clean Growth and Climate Change.
文摘Physiological modeling is important to evaluate the effects of heat and cold conditions on people’s thermal comfort and health. Experimental studies have found that older people (above 65 year old) undergo age-related weakening changes in their physiology and thermoregulatory activities, which makes them more vulnerable to heat or cold exposure than average aged young adults. However, addressing the age-related changes by modeling has been challenging due to their wide variability among the older population. This study develops a two-node physiological model to predict the thermal response of older people. The model is built on a newly developed two-node model for average-age young adults by accounting for the age-related attenuation of thermoregulation and sensory delays in triggering thermoregulatory actions. A numerical optimization method is developed to compute the model parameter values based on selected benchmark data from the literature. The proposed model is further validated with published measurement data covering large input ranges. The model predictions are in good agreement with the measurements in hot and cold exposure conditions with a discrepancy 0.60 °C for the mean skin temperature and of 0.30 °C for the core temperature. The proposed model can be integrated into building simulation tools to predict heat and cold stress levels and the associated thermal comfort for older people in built environments.