The ultraslow-spreading Southwest Indian Ridge (SWIR) to the east of the Melville fracture zone is characterized by very low melt supply and intensive tectonic activity. Due to its weak thermal budget and extremely ...The ultraslow-spreading Southwest Indian Ridge (SWIR) to the east of the Melville fracture zone is characterized by very low melt supply and intensive tectonic activity. Due to its weak thermal budget and extremely slow spreading rate, the easternmost SWIR was considered to be devoid of hydrothermal activity until the discovery of the inactive Mt. lourdanne hydrothermal field (27°51'S, 63°56'E) in 1998. During the COMRA DYl15-20 cruise in 2009, two additional hydrothermal fields (i.e., the Tiancheng (27°51'S, 63°55'E) and Tianzuo (27°57'S, 63°32'E) fields) were discovered. Further detailed investigations of these two hydrothermal sites were conducted by Chinese manned submersible liaolong in 2014-2015. The Tiancheng filed can he characterized as a low- temperature (up to 13.2℃) diffuse flow hydrothermal field, and is hosted by fractured basalts with hydrothermal fauna widespread on the seafloor. The Tianzuo hydrothermal field is an inactive sulfide field, which is hosted by ultramafic rocks and controlled by detachment fault. The discovery of the three hydrothermal fields around Segment #11 which receives more melt than the regional average, provided evidence for local enhanced magmatism providing heat source to drive hydrothermal circulation. We further imply that hydrothermal activity and sulfide deposits may be rather promising along the easternmost SWIR.展开更多
Hydrothermal plumes released from the eruption of sea floor hydrothermal fluids contain large amounts of oreforming materials. They precipitate within certain distances from the hydrothermal vent. Six surficial sedime...Hydrothermal plumes released from the eruption of sea floor hydrothermal fluids contain large amounts of oreforming materials. They precipitate within certain distances from the hydrothermal vent. Six surficial sediment samples from the Southwest Indian Ridge(SWIR) were analyzed by a portable X-ray fluorescence(PXRF) analyzer on board to find a favorable method fast and efficient enough for sea floor sulfide sediment geochemical exploration. These sediments were sampled near, at a moderate distance from, or far away from hydrothermal vents. The results demonstrate that the PXRF is effective in determining the enrichment characteristics of the oreforming elements in the calcareous sediments from the mid-ocean ridge. Sediment samples(〉40 mesh) have high levels of elemental copper, zinc, iron, and manganese, and levels of these elements in sediments finer than 40 mesh are lower and relatively stable. This may be due to relatively high levels of basalt debris/glass in the coarse sediments, which are consistent with the results obtained by microscopic observation. The results also show clear zoning of elements copper, zinc, arsenic, iron, and manganese in the surficial sediments around the hydrothermal vent. Sediments near the vent show relatively high content of the ore-forming elements and either high ratios of copper to iron content and zinc to iron content or high ratios of copper to manganese content and zinc to manganese content. These findings show that the content of the ore-forming elements in the sediments around hydrothermal vents are mainly influenced by the distance of sediments to the vent, rather than grain size. In this way, the PXRF analysis of surface sediment geochemistry is found to satisfy the requirements of recognition geochemical anomaly in mid-ocean ridge sediments. Sediments with diameters finer than 40 mesh should be used as analytical samples in the geochemical exploration for hydrothermal vents on mid-oceanic ridges. The results concerning copper, zinc, arsenic, iron, and manganese and their ratio features can be used as indicators in sediment geochemical exploration of seafloor sulfides.展开更多
基金The National Key Research and Development Program of China under contract Nos 2017YFC0306603,2018YFC0309901,2016YFC0304905,2017YFC0306803 and 2018YFC0309902the China Ocean Mineral Resources Research and Development Association Major Project under contract Nos DY135-S1-1-01 and DY135-S1-1-02
文摘The ultraslow-spreading Southwest Indian Ridge (SWIR) to the east of the Melville fracture zone is characterized by very low melt supply and intensive tectonic activity. Due to its weak thermal budget and extremely slow spreading rate, the easternmost SWIR was considered to be devoid of hydrothermal activity until the discovery of the inactive Mt. lourdanne hydrothermal field (27°51'S, 63°56'E) in 1998. During the COMRA DYl15-20 cruise in 2009, two additional hydrothermal fields (i.e., the Tiancheng (27°51'S, 63°55'E) and Tianzuo (27°57'S, 63°32'E) fields) were discovered. Further detailed investigations of these two hydrothermal sites were conducted by Chinese manned submersible liaolong in 2014-2015. The Tiancheng filed can he characterized as a low- temperature (up to 13.2℃) diffuse flow hydrothermal field, and is hosted by fractured basalts with hydrothermal fauna widespread on the seafloor. The Tianzuo hydrothermal field is an inactive sulfide field, which is hosted by ultramafic rocks and controlled by detachment fault. The discovery of the three hydrothermal fields around Segment #11 which receives more melt than the regional average, provided evidence for local enhanced magmatism providing heat source to drive hydrothermal circulation. We further imply that hydrothermal activity and sulfide deposits may be rather promising along the easternmost SWIR.
基金The Open Fund of Key Laboratory of Marine Mineral Resources,Ministry of Land and Resources under contract No.KLMMR-2015-B-03the China Ocean Mineral Resources Research and Development Association Project under contract Nos DY125-11-R-01 and DY125-11-R-05the National Basic Research Program(973 program)of China under contract No.2012CB417305
文摘Hydrothermal plumes released from the eruption of sea floor hydrothermal fluids contain large amounts of oreforming materials. They precipitate within certain distances from the hydrothermal vent. Six surficial sediment samples from the Southwest Indian Ridge(SWIR) were analyzed by a portable X-ray fluorescence(PXRF) analyzer on board to find a favorable method fast and efficient enough for sea floor sulfide sediment geochemical exploration. These sediments were sampled near, at a moderate distance from, or far away from hydrothermal vents. The results demonstrate that the PXRF is effective in determining the enrichment characteristics of the oreforming elements in the calcareous sediments from the mid-ocean ridge. Sediment samples(〉40 mesh) have high levels of elemental copper, zinc, iron, and manganese, and levels of these elements in sediments finer than 40 mesh are lower and relatively stable. This may be due to relatively high levels of basalt debris/glass in the coarse sediments, which are consistent with the results obtained by microscopic observation. The results also show clear zoning of elements copper, zinc, arsenic, iron, and manganese in the surficial sediments around the hydrothermal vent. Sediments near the vent show relatively high content of the ore-forming elements and either high ratios of copper to iron content and zinc to iron content or high ratios of copper to manganese content and zinc to manganese content. These findings show that the content of the ore-forming elements in the sediments around hydrothermal vents are mainly influenced by the distance of sediments to the vent, rather than grain size. In this way, the PXRF analysis of surface sediment geochemistry is found to satisfy the requirements of recognition geochemical anomaly in mid-ocean ridge sediments. Sediments with diameters finer than 40 mesh should be used as analytical samples in the geochemical exploration for hydrothermal vents on mid-oceanic ridges. The results concerning copper, zinc, arsenic, iron, and manganese and their ratio features can be used as indicators in sediment geochemical exploration of seafloor sulfides.