Before charge-coupled device detectors became widely employed in observational astronomy,for more than a hundred years,the main detection method was photography on astronomical glass plates.Recently,in order to preser...Before charge-coupled device detectors became widely employed in observational astronomy,for more than a hundred years,the main detection method was photography on astronomical glass plates.Recently,in order to preserve these historical data and maintain their usability,the International Astronomical Union has appealed to all countries for global digitization of astronomical plates by developing or adopting advanced digitization technology.Specialized digitizers with high precision and high measuring speed represent key equipment for this task.The Shanghai Astronomical Observatory and the Nishimura Co.,Ltd in Japan cooperated between 2013 and 2016 to develop the first Chinese high-precision astronomical plate digitizer,which was then used for complete digitization of all nighttime-observation astronomical plates in China.Then,in 2019–2021,the Shanghai Astronomical Observatory independently developed new models of plate digitizers that enabled countries such as Uzbekistan and Italy to digitize their astronomical plates.Additionally,a new high-precision and multifunction digitizer was also used to digitize valuable microscope slides from the Shanghai Natural History Museum,providing a successful example of cross-domain application of high-precision digitization technology.展开更多
Marine algae are valuable sources of health-promoting molecules that have been consumed by Asians for decades.Among aquatic flora,marine algae stand out in terms of high content of marine algae polysaccharides(MAP)suc...Marine algae are valuable sources of health-promoting molecules that have been consumed by Asians for decades.Among aquatic flora,marine algae stand out in terms of high content of marine algae polysaccharides(MAP)such as carrageenan,alginate,fucoidan,laminaran,agarose,rhamnan,and ulvan.When hydrolyzed,MAP generate marine algae oligosaccharides(MAO),which have attracted interest in recent years due to their superior solubility compared with MAP.Besides,MAO have been demonstrated numerous biological activities including antioxidant,antidiabetic,anti-inflammatory,antimicrobial,and prebiotic activities.Thus,this review summarizes the main chemical classes of MAO,their sources,and the main processes used for their production(i.e.,physical,chemical,and biological methods),coupled with a discussion of the advantages and disadvantages of these methods.Highlights of the biological activities of MAO and their potential applications in food,nutraceutical,and pharmaceuticals would also be discussed and summarized.展开更多
Background: Glucose oxidase(GOD), an aerobic dehydrogenase, has been used as an antibiotic substitute in feed.A study was conducted to evaluate the differential effects of 2 different GODs fermented by Aspergillus nig...Background: Glucose oxidase(GOD), an aerobic dehydrogenase, has been used as an antibiotic substitute in feed.A study was conducted to evaluate the differential effects of 2 different GODs fermented by Aspergillus niger or Penicillium amagasakiense on caecal microbiota and to further illuminate the potential roles of changes in the gut microbiota in regulating the growth performance and meat quality of broiler chickens.Results: A total of 420 one-day-old healthy Arbor Acres broilers were randomly assigned to 4 treatments: the control group,the antibiotic growth promoter(AGP) supplementation group, and the GOD-A and GOD-P(GODs produced by A. niger and P. amagasakiense, respectively) groups. As a result, supplementation with GOD produced by P. amagasakiense could significantly improve the average daily weight gain and average daily feed intake of broilers before 21 days of age by significantly increasing the enzymatic activities of jejunal amylase and those of ileal amylase, chymotrypsin, and lipase in21-day-old broilers and could increase the enzymatic activities of duodenal amylase, jejunal amylase and lipase, and ileal chymotrypsin and lipase in 42-day-old broilers. Meanwhile, compared with AGP treatment, supplementation with GOD produced by P. amagasakiense significantly decreased the L value of 21-day-old broilers and the Δp H and L* value of 42-day-old broilers, while supplementation with GOD produced by A. niger significantly increased the p H24 hvalue of 21-day-old and 42-day-old broilers by reducing plasma malondialdehyde content. By using 16 S r RNA sequencing, we found that the beneficial bacteria and microbiota in broilers were not disturbed but were improved by GOD supplementation compared with ADP treatment, including the genera Eubacterium and Christensenel a and the species uncultured_Eubacterium_sp,Clostridium_asparagiforme, and uncultured_Christensenel a_sp, which were positively related to the improved intestinal digestive enzymatic activities, growth performance, and meat quality of broilers.Conclusion: The altered gut microbiota induced by supplementation with glucose oxidase produced by P. amagasakiense mediate better regulatory effects on the meat quality and growth performance of broilers than that induced by supplementation with glucose oxidase produced by A. niger.展开更多
Background:Starch is an important substance that supplies energy to ruminants.To provide sufficient energy for high-yielding dairy ruminants,they are typically fed starch-enriched diets.However,starch-enriched diets h...Background:Starch is an important substance that supplies energy to ruminants.To provide sufficient energy for high-yielding dairy ruminants,they are typically fed starch-enriched diets.However,starch-enriched diets have been proven to increase the risk of milk fat depression(MFD)in dairy cows.The starch present in ruminant diets could be divided into rumen-degradable starch(RDS)and rumen escaped starch(RES)according to their different degradation sites(rumen or intestine).Goats and cows have different sensitivities to MFD.Data regarding the potential roles of RDS in milk fat synthesis in the mammary tissue of dairy goats and in regulating the occurrence of MFD are limited.Results:Eighteen Guanzhong dairy goats(day in milk=185±12 d)with similar parity,weight,and milk yield were selected and randomly assigned to one of three groups(n=6),which were fed an LRDS diet(Low RDS=20.52%),MRDS diet(Medium RDS=22.15%),or HRDS diet(High RDS=24.88%)for 5 weeks.Compared with that of the LRDS group,the milk fat contents in the MRDS and HRDS groups significantly decreased.The yields of short-,mediumand long-chain fatty acids decreased in the HRDS group.Furthermore,increased RDS significantly decreased ruminal B.fibrisolvens and Pseudobutyrivibrio abundances and increased the trans-10,cis-12 conjugated linoleic acid(CLA)and trans-10 C18:1 contents in the rumen fluid.A multiomics study revealed that the HRDS diet affected mammary lipid metabolism down-regulation of ACSS2,MVD,AGPS,SCD5,FADS2,CERCAM,SC5D,HSD17B7,HSD17B12,ATM,TP53RK,GDF1 and LOC102177400.Remarkably,the significant decrease of INSIG1,whose expression was depressed by trans-10,cis-12 CLA,could reduce the activity of SREBP and,consequently,downregulate the downstream gene expression of SREBF1.Conclusions:HRDS-induced goat MFD resulted from the downregulation of genes involved in lipogenesis,particularly,INSIG1.Specifically,even though the total starch content and the concentrate-to-fiber ratio were the same as those of the high-RDS diet,the low and medium RDS diets did not cause MFD in lactating goats.展开更多
Piwi-interacting RNAs(piRNAs)is a novel class of non-coding RNAs.However,changes in piRNA expression profiles in recurrent spontaneous abortion(RSA)have not yet been investigated.The aim of this study was to identify ...Piwi-interacting RNAs(piRNAs)is a novel class of non-coding RNAs.However,changes in piRNA expression profiles in recurrent spontaneous abortion(RSA)have not yet been investigated.The aim of this study was to identify differentially expressed piRNAs in deciduas of RSA patients.Decidua tissues were collected by curettage from recruited RSA patients and normal early pregnant(NEP)women with their informed consent.Small RNA sequencing was used to evaluate the differences in piRNA expression profiles between RSA and NEP.The present results demonstrated that the counts of total piRNA reads in RSA samples were increased compared with those in NEP samples(0.21%vs.0.11%).Differential expression analysis identified 29 upregulated piRNAs and 18 downregulated piRNAs in RSA samples.RT-qPCR further confirmed that the expression levels of uniq-109625,uniq-89328,uniq-50651 and uniq-4569 were decreased in 8 RSA tissues,compared with 13 NEP tissues.Otherwise,pi-22628 and uniq-173406 were increased in 8 RSA tissues.Based on GO term and KEGG pathway analysis,we speculate that these piRNAs regulate RSA by targeting extracellular matrix component pathway,cell adhesion pathway and focal adhesion pathway.PiRNAs may be involved in RSA pathogenesis by target genes function on adhesion and extracellular matrix component.展开更多
The objective of this study was to reveal the effect of rumen degradable starch(RDS)on bile acid metabolism and liver transcription in dairy goats using metabolomics and transcriptomics.Eighteen Guanzhong dairy goats ...The objective of this study was to reveal the effect of rumen degradable starch(RDS)on bile acid metabolism and liver transcription in dairy goats using metabolomics and transcriptomics.Eighteen Guanzhong dairy goats of a similar weight and production level(body weight=45.8±1.54 kg,milk yield=1.75±0.08 kg,and second parity)were randomly assigned to 3 treatment groups where they were fed a low RDS(LRDS,RDS=20.52%DM)diet,medium RDS(MRDS,RDS=22.15%DM)diet,or high RDS(HRDS,RDS=24.88%DM)diet,respectively.The goats were fed with the experimental diets for 5weeks.On the last day of the experiment,all goats were anesthetized,and peripheral blood and liver tissue samples were collected.The peripheral blood samples were used in metabolomic analysis and white blood cell(WBC)count,whereas the liver tissue samples were used in transcriptomic analysis.Based on the metabolomics results,the relative abundances of primary bile acids in the peripheral blood were significantly reduced in the group that was fed the HRDS diet(P<0.05).The WBC count was significantly increased in the HRDS group compared with that in the LRDS and MRDS groups(P<0.01),indicating that there was inflammation in the HRDS group.Transcriptomic analysis showed that 4 genes related to bile acid secretion(genes:MDR1,RXRa,AE2,SULT2A1)were significantly downregulated in the HRDS group.In addition,genes related to the immune response were upregulated in the HRDS group,suggesting the HRDS diet induced a hepatic inflammatory response mediated by lipopolysaccharides(LPS)(gene:LBP),activated the Toll-like receptor 4 binding(genes:S100A8,S100A9)and the NF-kappa B signaling pathway(genes:LOC106503980,LOC108638497,CD40,LOC102180880,LOC102170970,LOC102175177,LBP,LOC102168903,LOC102185461,LY96 and CXCL8),triggered inflammation and complement responses(genes:C1QB,C1QC,and CFD).The HRDS diet induced a hepatic inflammatory response may be mediated by activating the Toll-like receptor 4 binding and NF-kappa B signaling pathway after free LPS entered the liver.The changes of bile acids profile in blood and the downregulation of 4 key genes(MDR1,RXRa,AE2,SULT2A1)involved in bile secretion in liver are probably related to liver inflammation.展开更多
基金This work was conducted with the financial support of the National Key Research and Development Program of China(Grant No.2021YFE0103400)of the Shanghai Science and Technology Commission through its Scientific Research Project program(Grant No.21511104100)of the National Natural Science Foundation of China(Grant No.12073062).
文摘Before charge-coupled device detectors became widely employed in observational astronomy,for more than a hundred years,the main detection method was photography on astronomical glass plates.Recently,in order to preserve these historical data and maintain their usability,the International Astronomical Union has appealed to all countries for global digitization of astronomical plates by developing or adopting advanced digitization technology.Specialized digitizers with high precision and high measuring speed represent key equipment for this task.The Shanghai Astronomical Observatory and the Nishimura Co.,Ltd in Japan cooperated between 2013 and 2016 to develop the first Chinese high-precision astronomical plate digitizer,which was then used for complete digitization of all nighttime-observation astronomical plates in China.Then,in 2019–2021,the Shanghai Astronomical Observatory independently developed new models of plate digitizers that enabled countries such as Uzbekistan and Italy to digitize their astronomical plates.Additionally,a new high-precision and multifunction digitizer was also used to digitize valuable microscope slides from the Shanghai Natural History Museum,providing a successful example of cross-domain application of high-precision digitization technology.
基金financially supported by grants from the National Natural Science Foundation of China(31901692)2020 Li Ka Shing Foundation Cross-Disciplinary Research Grant(2020LKSFG02E)Natural Science Foundation of Guangdong Province,China(2021A1515011495)。
文摘Marine algae are valuable sources of health-promoting molecules that have been consumed by Asians for decades.Among aquatic flora,marine algae stand out in terms of high content of marine algae polysaccharides(MAP)such as carrageenan,alginate,fucoidan,laminaran,agarose,rhamnan,and ulvan.When hydrolyzed,MAP generate marine algae oligosaccharides(MAO),which have attracted interest in recent years due to their superior solubility compared with MAP.Besides,MAO have been demonstrated numerous biological activities including antioxidant,antidiabetic,anti-inflammatory,antimicrobial,and prebiotic activities.Thus,this review summarizes the main chemical classes of MAO,their sources,and the main processes used for their production(i.e.,physical,chemical,and biological methods),coupled with a discussion of the advantages and disadvantages of these methods.Highlights of the biological activities of MAO and their potential applications in food,nutraceutical,and pharmaceuticals would also be discussed and summarized.
基金supported by the National Natural Science Foundation of China (31972529, 31902184)the National Key Research and Development Projects (2017YFD0500500)the China Postdoctoral Science Foundation(2019M653774)。
文摘Background: Glucose oxidase(GOD), an aerobic dehydrogenase, has been used as an antibiotic substitute in feed.A study was conducted to evaluate the differential effects of 2 different GODs fermented by Aspergillus niger or Penicillium amagasakiense on caecal microbiota and to further illuminate the potential roles of changes in the gut microbiota in regulating the growth performance and meat quality of broiler chickens.Results: A total of 420 one-day-old healthy Arbor Acres broilers were randomly assigned to 4 treatments: the control group,the antibiotic growth promoter(AGP) supplementation group, and the GOD-A and GOD-P(GODs produced by A. niger and P. amagasakiense, respectively) groups. As a result, supplementation with GOD produced by P. amagasakiense could significantly improve the average daily weight gain and average daily feed intake of broilers before 21 days of age by significantly increasing the enzymatic activities of jejunal amylase and those of ileal amylase, chymotrypsin, and lipase in21-day-old broilers and could increase the enzymatic activities of duodenal amylase, jejunal amylase and lipase, and ileal chymotrypsin and lipase in 42-day-old broilers. Meanwhile, compared with AGP treatment, supplementation with GOD produced by P. amagasakiense significantly decreased the L value of 21-day-old broilers and the Δp H and L* value of 42-day-old broilers, while supplementation with GOD produced by A. niger significantly increased the p H24 hvalue of 21-day-old and 42-day-old broilers by reducing plasma malondialdehyde content. By using 16 S r RNA sequencing, we found that the beneficial bacteria and microbiota in broilers were not disturbed but were improved by GOD supplementation compared with ADP treatment, including the genera Eubacterium and Christensenel a and the species uncultured_Eubacterium_sp,Clostridium_asparagiforme, and uncultured_Christensenel a_sp, which were positively related to the improved intestinal digestive enzymatic activities, growth performance, and meat quality of broilers.Conclusion: The altered gut microbiota induced by supplementation with glucose oxidase produced by P. amagasakiense mediate better regulatory effects on the meat quality and growth performance of broilers than that induced by supplementation with glucose oxidase produced by A. niger.
基金This research was financially supported by the National Key Research and Development Program of China(award number:2017YFD0500500)the Science&Technological Project of Shaanxi Province,China(award number:2017 TSCXL-NY-04-01).
文摘Background:Starch is an important substance that supplies energy to ruminants.To provide sufficient energy for high-yielding dairy ruminants,they are typically fed starch-enriched diets.However,starch-enriched diets have been proven to increase the risk of milk fat depression(MFD)in dairy cows.The starch present in ruminant diets could be divided into rumen-degradable starch(RDS)and rumen escaped starch(RES)according to their different degradation sites(rumen or intestine).Goats and cows have different sensitivities to MFD.Data regarding the potential roles of RDS in milk fat synthesis in the mammary tissue of dairy goats and in regulating the occurrence of MFD are limited.Results:Eighteen Guanzhong dairy goats(day in milk=185±12 d)with similar parity,weight,and milk yield were selected and randomly assigned to one of three groups(n=6),which were fed an LRDS diet(Low RDS=20.52%),MRDS diet(Medium RDS=22.15%),or HRDS diet(High RDS=24.88%)for 5 weeks.Compared with that of the LRDS group,the milk fat contents in the MRDS and HRDS groups significantly decreased.The yields of short-,mediumand long-chain fatty acids decreased in the HRDS group.Furthermore,increased RDS significantly decreased ruminal B.fibrisolvens and Pseudobutyrivibrio abundances and increased the trans-10,cis-12 conjugated linoleic acid(CLA)and trans-10 C18:1 contents in the rumen fluid.A multiomics study revealed that the HRDS diet affected mammary lipid metabolism down-regulation of ACSS2,MVD,AGPS,SCD5,FADS2,CERCAM,SC5D,HSD17B7,HSD17B12,ATM,TP53RK,GDF1 and LOC102177400.Remarkably,the significant decrease of INSIG1,whose expression was depressed by trans-10,cis-12 CLA,could reduce the activity of SREBP and,consequently,downregulate the downstream gene expression of SREBF1.Conclusions:HRDS-induced goat MFD resulted from the downregulation of genes involved in lipogenesis,particularly,INSIG1.Specifically,even though the total starch content and the concentrate-to-fiber ratio were the same as those of the high-RDS diet,the low and medium RDS diets did not cause MFD in lactating goats.
基金Supported by the National Natural Science Foundation of China Grants(No.81801523)the Natural Science Foundation of Guangdong Province(Nos.2017A030313789,2018A030313528,2019A1515011984)+3 种基金the Science and Technology Planning Foundation of Guangzhou City(201904010017,202102080102)Guangdong Province Medical Research Funding(No.A2021269)the Family Planning Research Institute Innovation Team of Guangdong Province grants(C-03)the Family Planning Research Institute of Guangdong Province Grants(S2018010).
文摘Piwi-interacting RNAs(piRNAs)is a novel class of non-coding RNAs.However,changes in piRNA expression profiles in recurrent spontaneous abortion(RSA)have not yet been investigated.The aim of this study was to identify differentially expressed piRNAs in deciduas of RSA patients.Decidua tissues were collected by curettage from recruited RSA patients and normal early pregnant(NEP)women with their informed consent.Small RNA sequencing was used to evaluate the differences in piRNA expression profiles between RSA and NEP.The present results demonstrated that the counts of total piRNA reads in RSA samples were increased compared with those in NEP samples(0.21%vs.0.11%).Differential expression analysis identified 29 upregulated piRNAs and 18 downregulated piRNAs in RSA samples.RT-qPCR further confirmed that the expression levels of uniq-109625,uniq-89328,uniq-50651 and uniq-4569 were decreased in 8 RSA tissues,compared with 13 NEP tissues.Otherwise,pi-22628 and uniq-173406 were increased in 8 RSA tissues.Based on GO term and KEGG pathway analysis,we speculate that these piRNAs regulate RSA by targeting extracellular matrix component pathway,cell adhesion pathway and focal adhesion pathway.PiRNAs may be involved in RSA pathogenesis by target genes function on adhesion and extracellular matrix component.
基金financially supported by the National Key Research and Development Program of China(award number:2017YFD0500500)National Natural Science Foundation of China(award number:32072761)。
文摘The objective of this study was to reveal the effect of rumen degradable starch(RDS)on bile acid metabolism and liver transcription in dairy goats using metabolomics and transcriptomics.Eighteen Guanzhong dairy goats of a similar weight and production level(body weight=45.8±1.54 kg,milk yield=1.75±0.08 kg,and second parity)were randomly assigned to 3 treatment groups where they were fed a low RDS(LRDS,RDS=20.52%DM)diet,medium RDS(MRDS,RDS=22.15%DM)diet,or high RDS(HRDS,RDS=24.88%DM)diet,respectively.The goats were fed with the experimental diets for 5weeks.On the last day of the experiment,all goats were anesthetized,and peripheral blood and liver tissue samples were collected.The peripheral blood samples were used in metabolomic analysis and white blood cell(WBC)count,whereas the liver tissue samples were used in transcriptomic analysis.Based on the metabolomics results,the relative abundances of primary bile acids in the peripheral blood were significantly reduced in the group that was fed the HRDS diet(P<0.05).The WBC count was significantly increased in the HRDS group compared with that in the LRDS and MRDS groups(P<0.01),indicating that there was inflammation in the HRDS group.Transcriptomic analysis showed that 4 genes related to bile acid secretion(genes:MDR1,RXRa,AE2,SULT2A1)were significantly downregulated in the HRDS group.In addition,genes related to the immune response were upregulated in the HRDS group,suggesting the HRDS diet induced a hepatic inflammatory response mediated by lipopolysaccharides(LPS)(gene:LBP),activated the Toll-like receptor 4 binding(genes:S100A8,S100A9)and the NF-kappa B signaling pathway(genes:LOC106503980,LOC108638497,CD40,LOC102180880,LOC102170970,LOC102175177,LBP,LOC102168903,LOC102185461,LY96 and CXCL8),triggered inflammation and complement responses(genes:C1QB,C1QC,and CFD).The HRDS diet induced a hepatic inflammatory response may be mediated by activating the Toll-like receptor 4 binding and NF-kappa B signaling pathway after free LPS entered the liver.The changes of bile acids profile in blood and the downregulation of 4 key genes(MDR1,RXRa,AE2,SULT2A1)involved in bile secretion in liver are probably related to liver inflammation.