期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Use of Fe/Al drinking water treatment residuals as amendments for enhancing the retention capacity of glyphosate in agricultural soils 被引量:3
1
作者 Yuanyuan Zhao laura a.wendling +1 位作者 Changhui Wang Yuansheng Pei 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2015年第8期133-142,共10页
Fe/Al drinking water treatment residuals(WTRs), ubiquitous and non-hazardous by-products of drinking water purification, are cost-effective adsorbents for glyphosate. Given that repeated glyphosate applications coul... Fe/Al drinking water treatment residuals(WTRs), ubiquitous and non-hazardous by-products of drinking water purification, are cost-effective adsorbents for glyphosate. Given that repeated glyphosate applications could significantly decrease glyphosate retention by soils and that the adsorbed glyphosate is potentially mobile, high sorption capacity and stability of glyphosate in agricultural soils are needed to prevent pollution of water by glyphosate.Therefore, we investigated the feasibility of reusing Fe/Al WTR as a soil amendment to enhance the retention capacity of glyphosate in two agricultural soils. The results of batch experiments showed that the Fe/Al WTR amendment significantly enhanced the glyphosate sorption capacity of both soils(p 〈 0.001). Up to 30% of the previously adsorbed glyphosate desorbed from the non-amended soils, and the Fe/Al WTR amendment effectively decreased the proportion of glyphosate desorbed. Fractionation analyses further demonstrated that glyphosate adsorbed to non-amended soils was primarily retained in the readily labile fraction(Na HCO3-glyphosate). The WTR amendment significantly increased the relative proportion of the moderately labile fraction(HCl-glyphosate) and concomitantly reduced that of the Na HCO3-glyphosate, hence reducing the potential for the release of soil-adsorbed glyphosate into the aqueous phase. Furthermore, Fe/Al WTR amendment minimized the inhibitory effect of increasing solution p H on glyphosate sorption by soils and mitigated the effects of increasing solution ionic strength. The present results indicate that Fe/Al WTR is suitable for use as a soil amendment to prevent glyphosate pollution of aquatic ecosystems by enhancing the glyphosate retention capacity in soils. 展开更多
关键词 Glyphosate Soil amendment Fe/Al drinking water treatment residuals Sorption capacity Stability
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部