Wetlands are often created through wetland mitigation to replace lost natural wetlands, but further evaluation is needed to determine the ability of a created wetland to replace lost wetland functions, especially prov...Wetlands are often created through wetland mitigation to replace lost natural wetlands, but further evaluation is needed to determine the ability of a created wetland to replace lost wetland functions, especially providing wildlife habitat. We used a mesocosm design to compare the water quality between three created wetlands and three natural wetlands in West Virginia, USA and to evaluate how the water quality from the two wetland types were able to support metamorphosis in larval spring peepers (<em>Pseudacris crucifer</em>) and wood frogs (<em>Lithobates sylvaticus</em>) across two years (2014-2015). Responses in metamorphosis rates differed between species and between years. Spring peepers displayed similar metamorphosis rates in the created and natural wetlands in both years of the study. Wood frogs displayed similar metamorphosis rates in created and natural wetlands in 2015, but in 2014 wood frogs reached metamorphosis in less time and at a larger body size in the natural wetlands, suggesting that the wood frogs that developed in the natural wetlands may have higher fitness than those that developed in the created wetlands. Water quality was largely similar between created and natural wetlands, although dissolved oxygen, conductivity, and pH varied between mesocosms and wetlands. Our study suggests that created wetlands may be providing partial mitigation in terms of water quality for amphibian development. We recommend that future monitoring of created wetlands include measures of juvenile amphibian recruitment as well as additional habitat variables to better determine the ability of created wetlands to function as amphibian habitat.展开更多
文摘Wetlands are often created through wetland mitigation to replace lost natural wetlands, but further evaluation is needed to determine the ability of a created wetland to replace lost wetland functions, especially providing wildlife habitat. We used a mesocosm design to compare the water quality between three created wetlands and three natural wetlands in West Virginia, USA and to evaluate how the water quality from the two wetland types were able to support metamorphosis in larval spring peepers (<em>Pseudacris crucifer</em>) and wood frogs (<em>Lithobates sylvaticus</em>) across two years (2014-2015). Responses in metamorphosis rates differed between species and between years. Spring peepers displayed similar metamorphosis rates in the created and natural wetlands in both years of the study. Wood frogs displayed similar metamorphosis rates in created and natural wetlands in 2015, but in 2014 wood frogs reached metamorphosis in less time and at a larger body size in the natural wetlands, suggesting that the wood frogs that developed in the natural wetlands may have higher fitness than those that developed in the created wetlands. Water quality was largely similar between created and natural wetlands, although dissolved oxygen, conductivity, and pH varied between mesocosms and wetlands. Our study suggests that created wetlands may be providing partial mitigation in terms of water quality for amphibian development. We recommend that future monitoring of created wetlands include measures of juvenile amphibian recruitment as well as additional habitat variables to better determine the ability of created wetlands to function as amphibian habitat.