The performance of Nb superconducting quantum devices is predominantly limited by dielectric loss at the metal–air interface,where Nb2O5 is considered the main loss source.Here,we suppress the formation of native oxi...The performance of Nb superconducting quantum devices is predominantly limited by dielectric loss at the metal–air interface,where Nb2O5 is considered the main loss source.Here,we suppress the formation of native oxides by in-situ deposition of a TiN capping layer on the Nb film.With TiN capping layers,no Nb2O5 forms on the surface of the Nb film.The quality factor Qi of the Nb resonator increases from 5.6×10^(5) to 7.9×10^(5) at low input power and from 6.8×10^(6) to 1.1×10^(7)at high input power.Furthermore,the TiN capping layer also shows good aging resistance in Nb resonator devices,with no significant performance fluctuations after one month of aging.These findings highlight the effectiveness of TiN capping layers in enhancing the performance and longevity of Nb superconducting quantum devices.展开更多
Reducing the control error is vital for high-fidelity digital and analog quantum operations.In superconducting circuits,one disagreeable error arises from the reflection of microwave signals due to impedance mismatch ...Reducing the control error is vital for high-fidelity digital and analog quantum operations.In superconducting circuits,one disagreeable error arises from the reflection of microwave signals due to impedance mismatch in the control chain.Here,we demonstrate a reflection cancelation method when considering that there are two reflection nodes on the control line.We propose to generate the pre-distortion pulse by passing the envelopes of the microwave signal through digital filters,which enables real-time reflection correction when integrated into the field-programmable gate array(FPGA).We achieve a reduction of single-qubit gate infidelity from 0.67%to 0.11%after eliminating microwave reflection.Real-time correction of microwave reflection paves the way for precise control and manipulation of the qubit state and would ultimately enhance the performance of algorithms and simulations executed on quantum processors.展开更多
With the prevalence of obesity and obesity-related metabolic syndrome,such as insulin resistance in recent years,it is urgent to explore effective interventions to prevent the progression of obesity-related metabolic ...With the prevalence of obesity and obesity-related metabolic syndrome,such as insulin resistance in recent years,it is urgent to explore effective interventions to prevent the progression of obesity-related metabolic syndrome.Palmitoleic acid is a monounsaturated fatty acid that is available from dietary sources,mainly derived from marine products.P almitoleic acid plays a positive role in maintaining glucose homeostasis and reducing inflammation.However,it is still unknow the mechanism of palmitoleic acid in ameliorating insulin resistance.Here,we investigated the effects of palmitoleic acid on chow diet(CD)-fed and high-fat diet(HFD)-fed mice,which were fed CD or HFD for 12 weeks before administration.We administrated mice with BSA(control),oleic acid,or palmitoleic acid for 6 weeks on top of CD or HFD feeding.We found that palmitoleic acid only improved glucose homeostasis in HFD-fed obese mice by increasing glucose clearance and reducing HOMA-IR.Further study explored that palmitoleic acid changed the composition of gut microbiota by decreasing Firmicutes population and increasing Bacteroidetes population.In colon,palmitoleic acid increased intestinal tight junction integrity and reduced inflammation.Moreover,palmitoleic acid decreased macrophage infiltration in liver and adipose tissue and increase glucose uptake in adipose tissue.Diacylglycerol(DAG)in tissue(for example,liver)is found to positively correlated with HOMA-IR.HFD enhanced the levels of DAGs in liver but not in adipose tissue in this study.Palmitoleic acid did not reverse the high DAG levels induced by HFD in liver.Therefore,in HFD-fed mice,palmitoleic acid reduced insulin resistance by an independent-manner of DAGs.It might be associated with the beneficial effects of palmitoleic acid on altering the gut microbiota composition,improving of intestinal barrier function,and downregulating the inflammation in colon,liver,and adipose tissue.展开更多
The α5 subunit-containing gamma-amino butyric acid type A receptors(α5 GABAARs) are a distinct subpopulation that are specifically distributed in the mammalian hippocampus and also mediate tonic inhibitory currents ...The α5 subunit-containing gamma-amino butyric acid type A receptors(α5 GABAARs) are a distinct subpopulation that are specifically distributed in the mammalian hippocampus and also mediate tonic inhibitory currents in hippocampal neurons. These tonic currents can be enhanced by low-dose isoflurane, which is associated with learning and memory impairment. Inverse agonists of α5 GABAARs, such as L-655,708, are able to reverse the short-term memory deficit caused by low-dose isoflurane in young animals. However, whether these negative allosteric modulators have the same effects on aged rats remains unclear. In the present study, we mainly investigated the effects of L-655,708 on low-dose(1.3%) isoflurane-induced learning and memory impairment in elderly rats. Young(3-month-old) and aged(24-month-old) Wistar rats were randomly assigned to receive L-655,708 0.5 hour before or 23.5 hours after 1.3% isoflurane anesthesia.The Morris Water Maze tests demonstrated that L-655,708 injected before or after anesthesia could reverse the memory deficit in young rats. But in aged rats, application of L-655,708 only before anesthesia showed similar effects. Reverse transcription-polymerase chain reaction showed that low-dose isoflurane decreased the mRNA expression of α5 GABAARs in aging hippocampal neurons but increased that in young animals. These findings indicate that L-655,708 prevented but could not reverse 1.3% isoflurane-induced spatial learning and memory impairment in aged Wistar rats. All experimental procedures and protocols were approved by the Experimental Animal Ethics Committee of Academy of Military Medical Science of China(approval No. NBCDSER-IACUC-2015128) in December 2015.展开更多
ABO_(3)-type perovskite oxides(e.g.,LaCoO_(3))with flexible and adjustable A-and B-sites are ideal model catalysts to unravel the relationship between the electronic structure and electrocatalytic activity(e.g.,oxygen...ABO_(3)-type perovskite oxides(e.g.,LaCoO_(3))with flexible and adjustable A-and B-sites are ideal model catalysts to unravel the relationship between the electronic structure and electrocatalytic activity(e.g.,oxygen reduction/evolution reactions,ORR/OER).It has been well understood in our recent work that the secondary metal dopant at B-site(e.g.,Mn in LaMn_(x)Co_(1-x)O_(3))can regulate the electronic structure and improve the ORR/OER activity.In this work,the Mn-Ni pairs are employed as the dual dopant in LaMn_(x)Ni_(y)Co_(z)O_(3)(x+y+z=1)catalysts toward bifunctional ORR and OER.The structure-property relationships between the triple metal B-site(Mn,Ni and Co)and the electrochemical performance are particularly investigated.Compared to the individual Mn doping(e.g.,LaMnCoO3(Mn:Co=1:3)catalyst),the dual Mn-Ni doping significantly improves the ORR mass activity@0.8 V by 1.54 times;meanwhile,the OER overpotential@10 mA cm^(-2) is reduced from 420 to 370 mV,and the OER current density at 1.55 V is increased by 2.43 times.Reasonably,the potential gap between EDRR@-1 mA cm^(-2) and EDER@10 mA cm^(-2) is achieved as only 0.76 V by using the optimal LaMn_(x)Ni_(y)Co_(z)O_(3)(x:y:z=1:2:3)catalyst.It is revealed that the dual Mn-Ni dopant efficiently optimizes electron structures of the LaMnNiCoO_(3)(1:2:3)catalyst,which not only decreases the e_(g) orbital electron number,but also modulates the O 2 p-band closer to the Femi level,accounting for the enhanced bifunctional activity.展开更多
Oxygen reduction reaction(ORR)is an important electrochemical process for renewable energy conversion and storage applications such as fuel cells and metal-air batteries.ORR is sluggish in kinetics and requires a larg...Oxygen reduction reaction(ORR)is an important electrochemical process for renewable energy conversion and storage applications such as fuel cells and metal-air batteries.ORR is sluggish in kinetics and requires a large amount of platinum group metal(PGM)-based catalysts to facilitate its slow reaction rate.Application of precious metals raises the cost and decreases the competitivity of these devices in the market.To address this challenge,PGM-free ORR catalysts have been intensively investigated as an alternative to replace the PGM-based catalysts and to promote the deployment of ORR-related applications.In particular,the biomass holds promising potential to be used as the precursor material for PGM-free ORR catalysts.This pathway has gained more and more attention in recent years.In this review,recent advances regarding biomass-derived ORR catalysts are summarized with a focus on the rational design of both active sites and porous structures which are the two key factors in determining ORR performance of catalysts.At the end,the perspectives of development of biomass-derived catalysts is discussed.展开更多
A new approach to knowledge acquisition in incomplete information system with fuzzy decisions is proposed. In such incomplete information system, the universe of discourse is classified by the maximal tolerance classe...A new approach to knowledge acquisition in incomplete information system with fuzzy decisions is proposed. In such incomplete information system, the universe of discourse is classified by the maximal tolerance classes, and fuzzy approximations are defined based on them. Three types of relative reducts of maximal tolerance classes are then proposed, and three types of fuzzy decision rules based on the proposed attribute description are defined. The judgment theorems and approximation discernibility functions with respect to them are presented to compute the relative reduct by using Boolean reasoning techniques, from which we can derive optimal fuzzy decision rules from the systems. At last, three types of relative reducts of the system and their computing methods are given.展开更多
Regulating the local configuration of atomically dispersed transition-metal atom catalysts is the key to oxygen electrocatalysis performance enhancement.Unlike the previously reported singleatom or dual-atom configura...Regulating the local configuration of atomically dispersed transition-metal atom catalysts is the key to oxygen electrocatalysis performance enhancement.Unlike the previously reported singleatom or dual-atom configurations,we designed a new type of binary-atom catalyst,through engineering Fe-N_(4)electronic structure with adjacent Co-N_(2)C_(2)and nitrogen-coordinated Co nanoclusters,as oxygen electrocatalysts.The resultant optimized electronic structure of the Fe-N_(4)active center favors the binding capability of intermediates and enhances oxygen reduction reaction(ORR)activity in both alkaline and acid conditions.In addition,anchoring M-N-C atomic sites on highly graphitized carbon supports guarantees of efficient charge-and mass-transports,and escorts the high bifunctional catalytic activity of the entire catalyst.Further,through the combination of electrochemical studies and in-situ X-ray absorption spectroscopy analyses,the ORR degradation mechanisms under highly oxidative conditions during oxygen evolution reaction processes were revealed.This work developed a new binary-atom catalyst and systematically investigates the effect of highly oxidative environments on ORR electrochemical behavior.It demonstrates the strategy for facilitating oxygen electrocatalytic activity and stability of the atomically dispersed M-N-C catalysts.展开更多
Polymeric materials with excellent performance are the foundation for developing high-level technology and advanced manufacturing.Polymeric material genome engineering(PMGE)is becoming a vital platform for the intelli...Polymeric materials with excellent performance are the foundation for developing high-level technology and advanced manufacturing.Polymeric material genome engineering(PMGE)is becoming a vital platform for the intelligent manufacturing of polymeric materials.However,the development of PMGE is still in its infancy,and many issues remain to be addressed.In this perspective,we elaborate on the PMGE concepts,summarize the state-of-the-art research and achievements,and highlight the challenges and prospects in this field.In particular,we focus on property estimation approaches,including property proxy prediction and machine learning prediction of polymer properties.The potential engineering applications of PMGE are discussed,including the fields of advanced composites,polymeric materials for communications,and integrated circuits.展开更多
Silicon-containing arylacetylene (PSA) resins have broad application prospects because of their excellent heat resistance.However,improving their mechanical properties and interfacial bonding with reinforcement fibers...Silicon-containing arylacetylene (PSA) resins have broad application prospects because of their excellent heat resistance.However,improving their mechanical properties and interfacial bonding with reinforcement fibers while maintaining heat resistance is a challenge in engineering applications.Here,poly(diethynylbenzene-methylsilyl-3-benzonitrile)(DEB-CN) and poly(diethynylbenzene-methylsilyl-3,6-diethynylcarbazole-3-benzonitrile)(DEC-CN) were synthesized via an isopropylmagnesium chloride lithium-chloride complex (i-PrMgCl·LiCl),overcoming the compatibility problem between cyano groups and Grignard reagents.The cyano and alkyne groups in the resin underwent cyclization to form pyridine,catalyzed by the-NH-moiety in DEC-CN,resulting in extremely high thermal stability (5%weight loss temperature:669.3°C,glass transition temperature>650°C).The combination of cyano dipole-dipole pairing and hydrogen bonding greatly enhanced the resin-fiber interface properties,while the generated pyridine promoted stress relief in the crosslinked network,substantially improving the mechanical properties of the cyano-silicon-containing arylacetylene resin composites.The flexural strength of quartz fiber cloth/DEC-CN composites was 298.2 MPa at room temperature and 145.9 MPa at 500°C,corresponding to 84.0%and 127.6%enhancements,respectively,over the cyano-free counterpart.These cyano-silicon-containing arylacetylene resins exhibited a dual reinforcement mechanism involving physical interfacial interactions and chemical crosslinking,achieving a good balance between thermal stability and mechanical properties.展开更多
The development of renewable and affordable energy is crucial for building a sustainable society. In this context, establishing a sustainable infrastructure for renewable energy requires the integration of energy stor...The development of renewable and affordable energy is crucial for building a sustainable society. In this context, establishing a sustainable infrastructure for renewable energy requires the integration of energy storage, specifically use of renewable hydrogen. The hydrogen evolution reaction (HER) of electrochemical water splitting is a promising method for producing green hydrogen. Recently, two-dimensional nanomaterials have shown great promise in promoting the HER in terms of both fundamental research and practical applications due to their high specific surface areas and tunable electronic properties. Among them, molybdenum disulfide (MoS2), a non-noble metal catalyst, has emerged as a promising alternative to replace expensive platinum-based catalysts for the HER because MoS_(2)has a high inherent activity, low cost, and abundant reserves. At present, greatly improved activity and stability are urgently needed for MoS_(2)to enable wide deployment of water electrolysis devices. In this regard, efficient strategies for precisely modifying MoS_(2)are of interest. Herein, the progress made with MoS_(2)as an HER catalyst is reviewed, with a focus on modification strategies, including phase engineering, morphology design, defect engineering, heteroatom doping, and heterostructure construction. It is believed that these strategies will be helpful in designing and developing high-performance and low-cost MoS2-based catalysts by lowering the charge transfer barrier, increasing the active site density, and optimizing the surface hydrophilicity. In addition, the challenges of MoS_(2)electrocatalysts and perspectives for future research and development of these catalysts are discussed.展开更多
The growth of multi-mode Richtmyer-Meshkov instability under multiple impingements and the effect of initial shock strength on the growth of RMI are numerically investigated. We obtain the time evolution of turbulent ...The growth of multi-mode Richtmyer-Meshkov instability under multiple impingements and the effect of initial shock strength on the growth of RMI are numerically investigated. We obtain the time evolution of turbulent mixing zone width for initial shock with different strength. The results show that the turbulent mixing zone width grows in a different manner at different stage but strictly in a similar way for the initial shock with different strength. Also, the initial shock strength has a significant effect on the growth rate of turbulent mixing zone width, especially before reshock, but can not change the growth laws in the whole process.展开更多
We sought to investigate the correlation between the -455G/A and -148C/T polymorphisms of the β-fibrinogen gene and plasma fibrinogen levels in patients with cerebral infarction and in healthy subjects among the Xinj...We sought to investigate the correlation between the -455G/A and -148C/T polymorphisms of the β-fibrinogen gene and plasma fibrinogen levels in patients with cerebral infarction and in healthy subjects among the Xinjiang Uygur and Han Chinese populations, by using polymerase chain reaction-restriction enzyme digestion analysis. Results showed that there were no statistically significant differences in the distributions of the -455G/A genotype and allele frequency between the Uygurs and the Han. Plasma fibrinogen levels in cerebral infarction patients among the Uygurs and the Han were higher than those among healthy subjects. In particular, the frequencies of the -455G/A AA and -148C/T TT genotypes were significantly higher than in healthy subjects. Individuals carrying the A or T allele had a higher incidence of cerebral infarction compared with those carrying the G or C allele. Our experimental findings indicate that the -148C/T and -455G/A polymorphisms are associated with cerebral infarction in Xinjiang Uygur and Han Chinese subjects. The susceptibility- conferring alleles are -148T and -455A, and the susceptibility-conferring genotype is -455G/A + AA.展开更多
AIM: To investigate the disruptions of interstitial cells of Cajal (ICC) in the remaining bowel in rats after massive small bowel resection (mSBR). METHODS: Thirty male Sprague-Dawley rats fitting entry criteria were ...AIM: To investigate the disruptions of interstitial cells of Cajal (ICC) in the remaining bowel in rats after massive small bowel resection (mSBR). METHODS: Thirty male Sprague-Dawley rats fitting entry criteria were divided randomly into three experimental groups (n = 10 each): Group A rats underwent bowel transection and re-anastomosis (sham) and tissue samples were harvested at day 7 post-surgery. Group B and C rats underwent 80% small bowel resection with tissue harvested from Group B rats at day 7 post-surgery, and from Group C rats at day 14 postsurgery. The distribution of ICC at the site of the resid-ual small bowel was evaluated by immunohistochemical analysis of small intestine samples. The ultrastructural changes of ICC in the remnant ileum of model rats 7 and 14 d after mSBR were analyzed by transmission electron microscopy. Intracellular recordings of slow wave oscillations were used to evaluate electrical pacemaking. The protein expression of c-kit, ICC phenotypic markers, and membrane-bound stem cell factor (mSCF) in intestinal smooth muscle of each group were detected by Western blotting. RESULTS: After mSBR, immunohistochemical analysis indicated that the number of c-kit-positive cells was dramatically decreased in Group B rats compared with sham tissues. Significant ultrastructural changes in ICC with associated smooth muscle hypertrophy were also observed. Disordered spontaneous rhythmic contractions with reduced amplitude (8.5 ± 1.4 mV vs 24.8 ± 1.3 mV, P = 0.037) and increased slow wave frequency (39.5 ± 2.1 cycles/min vs 33.0 ± 1.3 cycles/min, P = 0.044) were found in the residual intestinal smooth muscle 7 d post mSBR. The contractile function and electrical activity of intestinal circular smooth muscle returned to normal levels at 14 d post mSBR (amplitude, 14.9 ± 1.6 mV vs 24.8 ± 1.3 mV; frequency, 30.7 ± 1.7 cycles/min vs 33.0 ± 1.3 cycles/min). The expression of Mscf and c-kit protein was decreased at 7 d (P = 0.026), but gradually returned to normal levels at 14 d. The ICC and associated neural networks were disrupted, which was associated with the phenotype alterations of ICC. CONCLUSION: Massive small bowel resection in rats triggered damage to ICC networks and decreased the number of ICC leading to disordered intestinal rhythmicity. The mSCF/c-kit signaling pathway plays a role in the regulation and maintenance of ICC phenotypes.展开更多
基金the National Natural Science Foun-dation of China(Grant Nos.12034018 and 11625419).
文摘The performance of Nb superconducting quantum devices is predominantly limited by dielectric loss at the metal–air interface,where Nb2O5 is considered the main loss source.Here,we suppress the formation of native oxides by in-situ deposition of a TiN capping layer on the Nb film.With TiN capping layers,no Nb2O5 forms on the surface of the Nb film.The quality factor Qi of the Nb resonator increases from 5.6×10^(5) to 7.9×10^(5) at low input power and from 6.8×10^(6) to 1.1×10^(7)at high input power.Furthermore,the TiN capping layer also shows good aging resistance in Nb resonator devices,with no significant performance fluctuations after one month of aging.These findings highlight the effectiveness of TiN capping layers in enhancing the performance and longevity of Nb superconducting quantum devices.
基金the National Natural Science Foun-dation of China(Grant Nos.12034018 and 11625419).
文摘Reducing the control error is vital for high-fidelity digital and analog quantum operations.In superconducting circuits,one disagreeable error arises from the reflection of microwave signals due to impedance mismatch in the control chain.Here,we demonstrate a reflection cancelation method when considering that there are two reflection nodes on the control line.We propose to generate the pre-distortion pulse by passing the envelopes of the microwave signal through digital filters,which enables real-time reflection correction when integrated into the field-programmable gate array(FPGA).We achieve a reduction of single-qubit gate infidelity from 0.67%to 0.11%after eliminating microwave reflection.Real-time correction of microwave reflection paves the way for precise control and manipulation of the qubit state and would ultimately enhance the performance of algorithms and simulations executed on quantum processors.
基金by National Natural Science Foundation of China(81803224)Young Scholars Program of Shandong University(2018WLJH33)to X.G.+3 种基金National Natural Science Foundation of China(81973031)Cheeloo Young Scholar Program of Shandong University(21320089963054)to H.W.Young Scholars Program of Shandong University(2018WLJH34)the Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology(LMDBKF-2019-05)to L.D.
文摘With the prevalence of obesity and obesity-related metabolic syndrome,such as insulin resistance in recent years,it is urgent to explore effective interventions to prevent the progression of obesity-related metabolic syndrome.Palmitoleic acid is a monounsaturated fatty acid that is available from dietary sources,mainly derived from marine products.P almitoleic acid plays a positive role in maintaining glucose homeostasis and reducing inflammation.However,it is still unknow the mechanism of palmitoleic acid in ameliorating insulin resistance.Here,we investigated the effects of palmitoleic acid on chow diet(CD)-fed and high-fat diet(HFD)-fed mice,which were fed CD or HFD for 12 weeks before administration.We administrated mice with BSA(control),oleic acid,or palmitoleic acid for 6 weeks on top of CD or HFD feeding.We found that palmitoleic acid only improved glucose homeostasis in HFD-fed obese mice by increasing glucose clearance and reducing HOMA-IR.Further study explored that palmitoleic acid changed the composition of gut microbiota by decreasing Firmicutes population and increasing Bacteroidetes population.In colon,palmitoleic acid increased intestinal tight junction integrity and reduced inflammation.Moreover,palmitoleic acid decreased macrophage infiltration in liver and adipose tissue and increase glucose uptake in adipose tissue.Diacylglycerol(DAG)in tissue(for example,liver)is found to positively correlated with HOMA-IR.HFD enhanced the levels of DAGs in liver but not in adipose tissue in this study.Palmitoleic acid did not reverse the high DAG levels induced by HFD in liver.Therefore,in HFD-fed mice,palmitoleic acid reduced insulin resistance by an independent-manner of DAGs.It might be associated with the beneficial effects of palmitoleic acid on altering the gut microbiota composition,improving of intestinal barrier function,and downregulating the inflammation in colon,liver,and adipose tissue.
文摘The α5 subunit-containing gamma-amino butyric acid type A receptors(α5 GABAARs) are a distinct subpopulation that are specifically distributed in the mammalian hippocampus and also mediate tonic inhibitory currents in hippocampal neurons. These tonic currents can be enhanced by low-dose isoflurane, which is associated with learning and memory impairment. Inverse agonists of α5 GABAARs, such as L-655,708, are able to reverse the short-term memory deficit caused by low-dose isoflurane in young animals. However, whether these negative allosteric modulators have the same effects on aged rats remains unclear. In the present study, we mainly investigated the effects of L-655,708 on low-dose(1.3%) isoflurane-induced learning and memory impairment in elderly rats. Young(3-month-old) and aged(24-month-old) Wistar rats were randomly assigned to receive L-655,708 0.5 hour before or 23.5 hours after 1.3% isoflurane anesthesia.The Morris Water Maze tests demonstrated that L-655,708 injected before or after anesthesia could reverse the memory deficit in young rats. But in aged rats, application of L-655,708 only before anesthesia showed similar effects. Reverse transcription-polymerase chain reaction showed that low-dose isoflurane decreased the mRNA expression of α5 GABAARs in aging hippocampal neurons but increased that in young animals. These findings indicate that L-655,708 prevented but could not reverse 1.3% isoflurane-induced spatial learning and memory impairment in aged Wistar rats. All experimental procedures and protocols were approved by the Experimental Animal Ethics Committee of Academy of Military Medical Science of China(approval No. NBCDSER-IACUC-2015128) in December 2015.
基金supported by the National Natural Science Foundation of China(Grant Nos.21433003,21805064 and 21773049)National Key Research and Development Program of China(Program No.2016YFB0101207)。
文摘ABO_(3)-type perovskite oxides(e.g.,LaCoO_(3))with flexible and adjustable A-and B-sites are ideal model catalysts to unravel the relationship between the electronic structure and electrocatalytic activity(e.g.,oxygen reduction/evolution reactions,ORR/OER).It has been well understood in our recent work that the secondary metal dopant at B-site(e.g.,Mn in LaMn_(x)Co_(1-x)O_(3))can regulate the electronic structure and improve the ORR/OER activity.In this work,the Mn-Ni pairs are employed as the dual dopant in LaMn_(x)Ni_(y)Co_(z)O_(3)(x+y+z=1)catalysts toward bifunctional ORR and OER.The structure-property relationships between the triple metal B-site(Mn,Ni and Co)and the electrochemical performance are particularly investigated.Compared to the individual Mn doping(e.g.,LaMnCoO3(Mn:Co=1:3)catalyst),the dual Mn-Ni doping significantly improves the ORR mass activity@0.8 V by 1.54 times;meanwhile,the OER overpotential@10 mA cm^(-2) is reduced from 420 to 370 mV,and the OER current density at 1.55 V is increased by 2.43 times.Reasonably,the potential gap between EDRR@-1 mA cm^(-2) and EDER@10 mA cm^(-2) is achieved as only 0.76 V by using the optimal LaMn_(x)Ni_(y)Co_(z)O_(3)(x:y:z=1:2:3)catalyst.It is revealed that the dual Mn-Ni dopant efficiently optimizes electron structures of the LaMnNiCoO_(3)(1:2:3)catalyst,which not only decreases the e_(g) orbital electron number,but also modulates the O 2 p-band closer to the Femi level,accounting for the enhanced bifunctional activity.
基金This study is financially supported by the Natural Sciences and Engineering Research Council of Canada(NSERC)the Fonds de Recherche du Québec—Nature et Technologies(FRQNT),Centre Québécois sur les Materiaux Fonctionnels(CQMF)+3 种基金Institut National de la Recherche Scientifique(INRS)National Natural Science Foundation of China(Grant No.21805064)SS acknowledges the ECS-Toyota Young Investigator Fellowship.LD acknowledges the scholarship under the International Postdoctoral Exchange Fellowship Program by the Office of China Postdoctoral Council(Grant No.20180072)FRQNT for the Postdoctoral scholarship(V2,file number:274384)in Quebec Canada.
文摘Oxygen reduction reaction(ORR)is an important electrochemical process for renewable energy conversion and storage applications such as fuel cells and metal-air batteries.ORR is sluggish in kinetics and requires a large amount of platinum group metal(PGM)-based catalysts to facilitate its slow reaction rate.Application of precious metals raises the cost and decreases the competitivity of these devices in the market.To address this challenge,PGM-free ORR catalysts have been intensively investigated as an alternative to replace the PGM-based catalysts and to promote the deployment of ORR-related applications.In particular,the biomass holds promising potential to be used as the precursor material for PGM-free ORR catalysts.This pathway has gained more and more attention in recent years.In this review,recent advances regarding biomass-derived ORR catalysts are summarized with a focus on the rational design of both active sites and porous structures which are the two key factors in determining ORR performance of catalysts.At the end,the perspectives of development of biomass-derived catalysts is discussed.
基金supported by the National Natural Science Foundation of China (61070241)the Natural Science Foundation of Shandong Province (ZR2010FM035)Science Research Foundation of University of Jinan (XKY0808)
文摘A new approach to knowledge acquisition in incomplete information system with fuzzy decisions is proposed. In such incomplete information system, the universe of discourse is classified by the maximal tolerance classes, and fuzzy approximations are defined based on them. Three types of relative reducts of maximal tolerance classes are then proposed, and three types of fuzzy decision rules based on the proposed attribute description are defined. The judgment theorems and approximation discernibility functions with respect to them are presented to compute the relative reduct by using Boolean reasoning techniques, from which we can derive optimal fuzzy decision rules from the systems. At last, three types of relative reducts of the system and their computing methods are given.
基金funded by the National Natural Science Foundation of China (22208331, 52003300)the Natural Sciences and Engineering Research Council of Canada (NSERC)+4 种基金the Fonds de Recherche du Québec-Nature et Technologies (FRQNT)Centre Québécois sur les Materiaux Fonctionnels (CQMF), McGill Universityécole de Technologie Supérieure (éTS)Institut National de la Recherche Scientifique (INRS)the support from the Marcelle-Gauvreau Engineering Research Chair program
文摘Regulating the local configuration of atomically dispersed transition-metal atom catalysts is the key to oxygen electrocatalysis performance enhancement.Unlike the previously reported singleatom or dual-atom configurations,we designed a new type of binary-atom catalyst,through engineering Fe-N_(4)electronic structure with adjacent Co-N_(2)C_(2)and nitrogen-coordinated Co nanoclusters,as oxygen electrocatalysts.The resultant optimized electronic structure of the Fe-N_(4)active center favors the binding capability of intermediates and enhances oxygen reduction reaction(ORR)activity in both alkaline and acid conditions.In addition,anchoring M-N-C atomic sites on highly graphitized carbon supports guarantees of efficient charge-and mass-transports,and escorts the high bifunctional catalytic activity of the entire catalyst.Further,through the combination of electrochemical studies and in-situ X-ray absorption spectroscopy analyses,the ORR degradation mechanisms under highly oxidative conditions during oxygen evolution reaction processes were revealed.This work developed a new binary-atom catalyst and systematically investigates the effect of highly oxidative environments on ORR electrochemical behavior.It demonstrates the strategy for facilitating oxygen electrocatalytic activity and stability of the atomically dispersed M-N-C catalysts.
基金supported by the National Natural Science Foundation of China(22103025,51833003,22173030,21975073,and 51621002).
文摘Polymeric materials with excellent performance are the foundation for developing high-level technology and advanced manufacturing.Polymeric material genome engineering(PMGE)is becoming a vital platform for the intelligent manufacturing of polymeric materials.However,the development of PMGE is still in its infancy,and many issues remain to be addressed.In this perspective,we elaborate on the PMGE concepts,summarize the state-of-the-art research and achievements,and highlight the challenges and prospects in this field.In particular,we focus on property estimation approaches,including property proxy prediction and machine learning prediction of polymer properties.The potential engineering applications of PMGE are discussed,including the fields of advanced composites,polymeric materials for communications,and integrated circuits.
基金financially supported by the Key Laboratory of Specially Functional Polymeric Materials and Related Technology of Ministry of Education, East China University of Science & Technology, and the Fundamental Research Funds for the Central Universities (Nos. 50321041918013 and 50321041917001)。
文摘Silicon-containing arylacetylene (PSA) resins have broad application prospects because of their excellent heat resistance.However,improving their mechanical properties and interfacial bonding with reinforcement fibers while maintaining heat resistance is a challenge in engineering applications.Here,poly(diethynylbenzene-methylsilyl-3-benzonitrile)(DEB-CN) and poly(diethynylbenzene-methylsilyl-3,6-diethynylcarbazole-3-benzonitrile)(DEC-CN) were synthesized via an isopropylmagnesium chloride lithium-chloride complex (i-PrMgCl·LiCl),overcoming the compatibility problem between cyano groups and Grignard reagents.The cyano and alkyne groups in the resin underwent cyclization to form pyridine,catalyzed by the-NH-moiety in DEC-CN,resulting in extremely high thermal stability (5%weight loss temperature:669.3°C,glass transition temperature>650°C).The combination of cyano dipole-dipole pairing and hydrogen bonding greatly enhanced the resin-fiber interface properties,while the generated pyridine promoted stress relief in the crosslinked network,substantially improving the mechanical properties of the cyano-silicon-containing arylacetylene resin composites.The flexural strength of quartz fiber cloth/DEC-CN composites was 298.2 MPa at room temperature and 145.9 MPa at 500°C,corresponding to 84.0%and 127.6%enhancements,respectively,over the cyano-free counterpart.These cyano-silicon-containing arylacetylene resins exhibited a dual reinforcement mechanism involving physical interfacial interactions and chemical crosslinking,achieving a good balance between thermal stability and mechanical properties.
基金the Outstanding Youth Project of Guangdong Provincial Natural Science Foundation,China(Grant No.2022B1515020020)the National Natural Science Foundation of China(Grant No.2225071013)+2 种基金the Guangdong Basic and Applied Basic Research Foundation,China(No.2022B1515120079)the Funding by Science and Technology Projects in Guangzhou,China(No.202206050003)the Guangdong Engineering Technology Research Center for Hydrogen Energy and Fuel Cells,China.
文摘The development of renewable and affordable energy is crucial for building a sustainable society. In this context, establishing a sustainable infrastructure for renewable energy requires the integration of energy storage, specifically use of renewable hydrogen. The hydrogen evolution reaction (HER) of electrochemical water splitting is a promising method for producing green hydrogen. Recently, two-dimensional nanomaterials have shown great promise in promoting the HER in terms of both fundamental research and practical applications due to their high specific surface areas and tunable electronic properties. Among them, molybdenum disulfide (MoS2), a non-noble metal catalyst, has emerged as a promising alternative to replace expensive platinum-based catalysts for the HER because MoS_(2)has a high inherent activity, low cost, and abundant reserves. At present, greatly improved activity and stability are urgently needed for MoS_(2)to enable wide deployment of water electrolysis devices. In this regard, efficient strategies for precisely modifying MoS_(2)are of interest. Herein, the progress made with MoS_(2)as an HER catalyst is reviewed, with a focus on modification strategies, including phase engineering, morphology design, defect engineering, heteroatom doping, and heterostructure construction. It is believed that these strategies will be helpful in designing and developing high-performance and low-cost MoS2-based catalysts by lowering the charge transfer barrier, increasing the active site density, and optimizing the surface hydrophilicity. In addition, the challenges of MoS_(2)electrocatalysts and perspectives for future research and development of these catalysts are discussed.
文摘The growth of multi-mode Richtmyer-Meshkov instability under multiple impingements and the effect of initial shock strength on the growth of RMI are numerically investigated. We obtain the time evolution of turbulent mixing zone width for initial shock with different strength. The results show that the turbulent mixing zone width grows in a different manner at different stage but strictly in a similar way for the initial shock with different strength. Also, the initial shock strength has a significant effect on the growth rate of turbulent mixing zone width, especially before reshock, but can not change the growth laws in the whole process.
基金supported by the National Natural Science Foundation of China, No. 81060097
文摘We sought to investigate the correlation between the -455G/A and -148C/T polymorphisms of the β-fibrinogen gene and plasma fibrinogen levels in patients with cerebral infarction and in healthy subjects among the Xinjiang Uygur and Han Chinese populations, by using polymerase chain reaction-restriction enzyme digestion analysis. Results showed that there were no statistically significant differences in the distributions of the -455G/A genotype and allele frequency between the Uygurs and the Han. Plasma fibrinogen levels in cerebral infarction patients among the Uygurs and the Han were higher than those among healthy subjects. In particular, the frequencies of the -455G/A AA and -148C/T TT genotypes were significantly higher than in healthy subjects. Individuals carrying the A or T allele had a higher incidence of cerebral infarction compared with those carrying the G or C allele. Our experimental findings indicate that the -148C/T and -455G/A polymorphisms are associated with cerebral infarction in Xinjiang Uygur and Han Chinese subjects. The susceptibility- conferring alleles are -148T and -455A, and the susceptibility-conferring genotype is -455G/A + AA.
基金Supported by Grants from the Program for Innovative Research Team of Shanghai Municipal Education Commission and Special Foundation of Shanghai Municipal Public Health Bureau, LJ06021the National Natural Science Foundation of China, No. 30772270, 30972427the Scientific Foundation of Nantong University, No. 10Z046
文摘AIM: To investigate the disruptions of interstitial cells of Cajal (ICC) in the remaining bowel in rats after massive small bowel resection (mSBR). METHODS: Thirty male Sprague-Dawley rats fitting entry criteria were divided randomly into three experimental groups (n = 10 each): Group A rats underwent bowel transection and re-anastomosis (sham) and tissue samples were harvested at day 7 post-surgery. Group B and C rats underwent 80% small bowel resection with tissue harvested from Group B rats at day 7 post-surgery, and from Group C rats at day 14 postsurgery. The distribution of ICC at the site of the resid-ual small bowel was evaluated by immunohistochemical analysis of small intestine samples. The ultrastructural changes of ICC in the remnant ileum of model rats 7 and 14 d after mSBR were analyzed by transmission electron microscopy. Intracellular recordings of slow wave oscillations were used to evaluate electrical pacemaking. The protein expression of c-kit, ICC phenotypic markers, and membrane-bound stem cell factor (mSCF) in intestinal smooth muscle of each group were detected by Western blotting. RESULTS: After mSBR, immunohistochemical analysis indicated that the number of c-kit-positive cells was dramatically decreased in Group B rats compared with sham tissues. Significant ultrastructural changes in ICC with associated smooth muscle hypertrophy were also observed. Disordered spontaneous rhythmic contractions with reduced amplitude (8.5 ± 1.4 mV vs 24.8 ± 1.3 mV, P = 0.037) and increased slow wave frequency (39.5 ± 2.1 cycles/min vs 33.0 ± 1.3 cycles/min, P = 0.044) were found in the residual intestinal smooth muscle 7 d post mSBR. The contractile function and electrical activity of intestinal circular smooth muscle returned to normal levels at 14 d post mSBR (amplitude, 14.9 ± 1.6 mV vs 24.8 ± 1.3 mV; frequency, 30.7 ± 1.7 cycles/min vs 33.0 ± 1.3 cycles/min). The expression of Mscf and c-kit protein was decreased at 7 d (P = 0.026), but gradually returned to normal levels at 14 d. The ICC and associated neural networks were disrupted, which was associated with the phenotype alterations of ICC. CONCLUSION: Massive small bowel resection in rats triggered damage to ICC networks and decreased the number of ICC leading to disordered intestinal rhythmicity. The mSCF/c-kit signaling pathway plays a role in the regulation and maintenance of ICC phenotypes.