Cultivating salt-tolerant crops is a feasible way to effectively utilize saline-alkali land and solve the problem of underutilization of saline soils.Quinoa,a protein-comprehensive cereal in the plant kingdom,is an ex...Cultivating salt-tolerant crops is a feasible way to effectively utilize saline-alkali land and solve the problem of underutilization of saline soils.Quinoa,a protein-comprehensive cereal in the plant kingdom,is an exceptional crop in terms of salt stress tolerance level.It seems an excellent model for the exploration of salt-tolerance mechanisms and cultivation of salt-tolerant germplasms.In this study,the seeds and seedlings of the quinoa cultivar Shelly were treated with different concentrations of NaCl solution.The physiological,biochemical characteristics and agronomic traits were investigated,and the response patterns of three salt stress-responsive genes(SSRGs)in quinoa were determined by real-time PCR.The optimum level of stress tolerance of quinoa cultivar Shelly was found in the range of 250–350 mM concentration of NaCl.Salt stress significantly induced expression of superoxide dismutase(SOD),peroxidase(POD),and particularly betaine aldehyde dehydrogenase(BADH).BADH was discovered to be more sensitive to salt stress and played an important role in the salt stress tolerance of quinoa seedlings,particularly at high NaCl concentrations,as it displayed upregulation until 24 h under 100 mM salt treatment.Moreover,it showed upregulation until 12 h under 250 mM salt stress.Taken together,these results suggest that BADH played an essential role in the salt-tolerance mechanism of quinoa.Based on the expression level and prompt response induced by NaCl,we suggest that the BADH can be considered as a molecular marker for screening salt-tolerant quinoa germplasm at the early stages of crop development.Salt treatment at different plant ontogeny or at different concentrations had a significant impact on quinoa growth.Therefore,an appropriate treatment approach needs to be chosen rationally in the process of screening salt-tolerant quinoa germplasm,which is useful to the utilization of saline soils.Our study provides a fundamental information to deepen knowledge of the salt tolerance mechanism of quinoa for the development of salt-tolerant germplasm in crop breeding programs.展开更多
The Shack-Hartmann wavefront sensor(SHWS)is an essential tool for wavefront sensing in adaptive optical microscopes.However,the distorted spots induced by the complex wavefront challenge its detection performance.Here...The Shack-Hartmann wavefront sensor(SHWS)is an essential tool for wavefront sensing in adaptive optical microscopes.However,the distorted spots induced by the complex wavefront challenge its detection performance.Here,we propose a deep learning based wavefront detection method which combines point spread function image based Zernike coefficient estimation and wavefront stitching.Rather than using the centroid displacements of each micro-lens,this method first estimates the Zernike coefficients of local wavefront distribution over each micro-lens and then stitches the local wavefronts for reconstruction.The proposed method can offer low root mean square wavefront errors and high accuracy for complex wavefront detection,and has potential to be applied in adaptive optical microscopes.展开更多
基金supported jointly by the Public Project of Science Technology Department of Zhejiang Province(Grant No.2016C02050-9-9)to Y.Jiang and the Zhejiang Provincial Natural Science Foundation of China(Grant No.Y21C130006)to Y.Jiang,and the Key Research and Development Project of Zhejiang Province(Grant No.2021C02057)to G.Luo.
文摘Cultivating salt-tolerant crops is a feasible way to effectively utilize saline-alkali land and solve the problem of underutilization of saline soils.Quinoa,a protein-comprehensive cereal in the plant kingdom,is an exceptional crop in terms of salt stress tolerance level.It seems an excellent model for the exploration of salt-tolerance mechanisms and cultivation of salt-tolerant germplasms.In this study,the seeds and seedlings of the quinoa cultivar Shelly were treated with different concentrations of NaCl solution.The physiological,biochemical characteristics and agronomic traits were investigated,and the response patterns of three salt stress-responsive genes(SSRGs)in quinoa were determined by real-time PCR.The optimum level of stress tolerance of quinoa cultivar Shelly was found in the range of 250–350 mM concentration of NaCl.Salt stress significantly induced expression of superoxide dismutase(SOD),peroxidase(POD),and particularly betaine aldehyde dehydrogenase(BADH).BADH was discovered to be more sensitive to salt stress and played an important role in the salt stress tolerance of quinoa seedlings,particularly at high NaCl concentrations,as it displayed upregulation until 24 h under 100 mM salt treatment.Moreover,it showed upregulation until 12 h under 250 mM salt stress.Taken together,these results suggest that BADH played an essential role in the salt-tolerance mechanism of quinoa.Based on the expression level and prompt response induced by NaCl,we suggest that the BADH can be considered as a molecular marker for screening salt-tolerant quinoa germplasm at the early stages of crop development.Salt treatment at different plant ontogeny or at different concentrations had a significant impact on quinoa growth.Therefore,an appropriate treatment approach needs to be chosen rationally in the process of screening salt-tolerant quinoa germplasm,which is useful to the utilization of saline soils.Our study provides a fundamental information to deepen knowledge of the salt tolerance mechanism of quinoa for the development of salt-tolerant germplasm in crop breeding programs.
基金Project supported by the National Natural Science Foundation of China(Nos.61735016,81771877,and 61975178)the Zhejiang Provincial Natural Science Foundation of China(No.LR20F050002)+2 种基金the Key R&D Program of Zhejiang Province,China(No.2021C03001)the CAMS Innovation Fund for Medical Sciences,China(No.2019-I2M-5-057)the Fundamental Research Funds for the Central Universities,China。
文摘The Shack-Hartmann wavefront sensor(SHWS)is an essential tool for wavefront sensing in adaptive optical microscopes.However,the distorted spots induced by the complex wavefront challenge its detection performance.Here,we propose a deep learning based wavefront detection method which combines point spread function image based Zernike coefficient estimation and wavefront stitching.Rather than using the centroid displacements of each micro-lens,this method first estimates the Zernike coefficients of local wavefront distribution over each micro-lens and then stitches the local wavefronts for reconstruction.The proposed method can offer low root mean square wavefront errors and high accuracy for complex wavefront detection,and has potential to be applied in adaptive optical microscopes.