期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Effect of electroacupuncture on the mRNA and protein expression of Rho-A and Rho-associated kinase Ⅱ in spinal cord injury rats 被引量:9
1
作者 You-jiang Min Li-li-qiang Ding +5 位作者 li-hong cheng Wei-ping Xiao Xing-wei He Hui Zhang Zhi-yun Min Jia Pei 《Neural Regeneration Research》 SCIE CAS CSCD 2017年第2期276-282,共7页
Electroacupuncture is beneficial for the recovery of spinal cord injury, but the underlying mechanism is unclear. The Rho/Rho-associated kinase(ROCK) signaling pathway regulates the actin cytoskeleton by controlling... Electroacupuncture is beneficial for the recovery of spinal cord injury, but the underlying mechanism is unclear. The Rho/Rho-associated kinase(ROCK) signaling pathway regulates the actin cytoskeleton by controlling the adhesive and migratory behaviors of cells that could inhibit neurite regrowth after neural injury and consequently hinder the recovery from spinal cord injury. Therefore, we hypothesized electroacupuncture could affect the Rho/ROCK signaling pathway to promote the recovery of spinal cord injury. In our experiments, the spinal cord injury in adult Sprague-Dawley rats was caused by an impact device. Those rats were subjected to electroacupuncture at Yaoyangguan(GV3), Dazhui(GV14), Zusanli(ST36) and Ciliao(BL32) and/or monosialoganglioside treatment. Behavioral scores revealed that the hindlimb motor functions improved with those treatments. Real-time quantitative polymerase chain reaction, fluorescence in situ hybridization and western blot assay showed that electroacupuncture suppressed the m RNA and protein expression of Rho-A and Rho-associated kinase Ⅱ(ROCKⅡ) of injured spinal cord. Although monosialoganglioside promoted the recovery of hindlimb motor function, monosialoganglioside did not affect the expression of Rho-A and ROCKⅡ. However, electroacupuncture combined with monosialoganglioside did not further improve the motor function or suppress the expression of Rho-A and ROCKⅡ. Our data suggested that the electroacupuncture could specifically inhibit the activation of the Rho/ROCK signaling pathway thus partially contributing to the repair of injured spinal cord. Monosialoganglioside could promote the motor function but did not suppress expression of Rho A and ROCKⅡ. There was no synergistic effect of electroacupuncture combined with monosialoganglioside. 展开更多
关键词 nerve regeneration spinal cord injury electroacupuncture Rho/Rho-associated kinase signaling pathway monosialoganglioside motor function cytoskeleton real-time quantitative polymerase chain reaction western blot assay hybridization in situ neural regeneration
下载PDF
Direct electron acceleration by chirped laser pulse in a cylindrical plasma channel
2
作者 Yong-Nan Hu li-hong cheng +3 位作者 Zheng-Wei Yao Xiao-Bo Zhang Ai-Xia Zhang Ju-Kui Xue 《Chinese Physics B》 SCIE EI CAS CSCD 2020年第8期255-263,共9页
We study the dynamics of single electron in an inhomogeneous cylindrical plasma channel during the direct acceleration by linearly polarized chirped laser pulse.By adjusting the parameters of the chirped laser pulse a... We study the dynamics of single electron in an inhomogeneous cylindrical plasma channel during the direct acceleration by linearly polarized chirped laser pulse.By adjusting the parameters of the chirped laser pulse and the plasma channel,we obtain the energy gain,trajectory,dephasing rate and unstable threshold of electron oscillation in the channel.The influences of the chirped factor and inhomogeneous plasma density distribution on the electron dynamics are discussed in depth.We find that the nonlinearly chirped laser pulse and the inhomogeneous plasma channel have strong coupled influence on the electron dynamics.The electron energy gain can be enhanced,the instability threshold of the electron oscillation can be lowered,and the acceleration length can be shortened by chirped laser,while the inhomogeneity of the plasma channel can reduce the amplitude of the chirped laser. 展开更多
关键词 chirped laser pulse plasma channel laser-plasma interaction electron acceleration
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部