期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
利用深度卷积神经网络将耳语转换为正常语音 被引量:8
1
作者 连海伦 周健 +1 位作者 胡雨婷 郑文明 《声学学报》 EI CSCD 北大核心 2020年第1期137-144,共8页
耳语是一种特殊发音方式,将耳语转换为正常语音是提升耳语质量和可懂度的关键方法。为了充分利用语音的频域和时域相关性实现耳语转换,提出了使用深度卷积神经网络(Deep Convolutional Neural Networks,DCNN)将耳语转换为正常语音。它... 耳语是一种特殊发音方式,将耳语转换为正常语音是提升耳语质量和可懂度的关键方法。为了充分利用语音的频域和时域相关性实现耳语转换,提出了使用深度卷积神经网络(Deep Convolutional Neural Networks,DCNN)将耳语转换为正常语音。它的卷积层用来提取连续帧语音谱包络之间的频域与时域的相关特征,而全连接层用来拟合耳语在卷积层提取的特征和对应正常语音之间的映射关系。实验结果表明与深度神经网络(Deep Neural Networks,DNN)模型相比,DCNN模型获得的转换后语音的梅尔倒谱失真度(Cepstral Distance,CD)降低了4.64%,而语音质量感知评价(Perceptual Evaluation of Speech Quality,PESQ)、短时客观可懂度(Short-Time Objective Intelligibility,STOI)与平均主观意见分(Mean Opinion Score,MOS)分别提高了5.41%,5.77%,9.68%。 展开更多
关键词 时域相关性 DNN 基频曲线 深度卷积神经网络 卷积层 卷积核
原文传递
一种基于特征融合的耳语音向正常音的转换方法
2
作者 庞聪 连海伦 +2 位作者 周健 王华彬 陶亮 《南京航空航天大学学报》 EI CAS CSCD 北大核心 2020年第5期777-782,共6页
使用耳语音的频谱包络来预估正常音的基频特征,这类算法在对正常音基频预测的准确性上存在一定不足,在合成语音自然度方面存在着明显欠缺,有时会出现音调失常等问题。本文提出一种声学特征融合的方法,通过双向长短期记忆(Bi‑long short‑... 使用耳语音的频谱包络来预估正常音的基频特征,这类算法在对正常音基频预测的准确性上存在一定不足,在合成语音自然度方面存在着明显欠缺,有时会出现音调失常等问题。本文提出一种声学特征融合的方法,通过双向长短期记忆(Bi‑long short‑term memory,BLSTM)深度网络来逐帧预测正常音基频。首先,使用STRAIGHT模型和相关代码,分别对耳语音和正常音语料进行预处理,提取耳语音的梅尔倒谱系数(Mel‑scale frequency cepstral coefficient,MFCC)、韵律及谱包络特征,正常音的基频与谱包络特征。然后使用BLSTM深度网络,分别建立耳语音和正常音谱包络特征之间映射关系,以及耳语音MFCC、韵律及谱包络特征对正常音基频F0的映射关系。最后根据耳语音的MFCC、韵律及谱包络特征获得对应的正常音基频和谱包络,使用STRAIGHT模型合成正常音。实验结果表明,相较于仅使用谱包络估计基频,采用此种方法引入语音韵律和MFCC的融合特征是对基频特征的良好补充,解决了音调失常的现象,转换后的语音在韵律上更加接近正常发音。 展开更多
关键词 语音转换 特征融合 韵律模型 STRAIGHT模型 双向长短期记忆
下载PDF
Multi-head attention-based long short-term memory model for speech emotion recognition 被引量:1
3
作者 Zhao Yan Zhao Li +3 位作者 Lu Cheng Li Sunan Tang Chuangao lian hailun 《Journal of Southeast University(English Edition)》 EI CAS 2022年第2期103-109,共7页
To fully make use of information from different representation subspaces,a multi-head attention-based long short-term memory(LSTM)model is proposed in this study for speech emotion recognition(SER).The proposed model ... To fully make use of information from different representation subspaces,a multi-head attention-based long short-term memory(LSTM)model is proposed in this study for speech emotion recognition(SER).The proposed model uses frame-level features and takes the temporal information of emotion speech as the input of the LSTM layer.Here,a multi-head time-dimension attention(MHTA)layer was employed to linearly project the output of the LSTM layer into different subspaces for the reduced-dimension context vectors.To provide relative vital information from other dimensions,the output of MHTA,the output of feature-dimension attention,and the last time-step output of LSTM were utilized to form multiple context vectors as the input of the fully connected layer.To improve the performance of multiple vectors,feature-dimension attention was employed for the all-time output of the first LSTM layer.The proposed model was evaluated on the eNTERFACE and GEMEP corpora,respectively.The results indicate that the proposed model outperforms LSTM by 14.6%and 10.5%for eNTERFACE and GEMEP,respectively,proving the effectiveness of the proposed model in SER tasks. 展开更多
关键词 speech emotion recognition long short-term memory(LSTM) multi-head attention mechanism frame-level features self-attention
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部