期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
High-resolution crustal velocity imaging using ambient noise recordings from a high-density seismic array:An example from the Shangrao section of the Xinjiang basin,China 被引量:9
1
作者 Gaochun Wang Xiaobo Tian +2 位作者 lianglei guo Jiayong Yan Qingtian Lyu 《Earthquake Science》 CSCD 2018年第5期242-251,共10页
A profile of shallow crustal velocity structure(1–2 km) may greatly enhance interpretation of the sedimentary environment and shallow tectonic deformation.Recent advances in surface wave tomography, using ambient noi... A profile of shallow crustal velocity structure(1–2 km) may greatly enhance interpretation of the sedimentary environment and shallow tectonic deformation.Recent advances in surface wave tomography, using ambient noise data recorded with high-density seismic arrays, have improved the understanding of regional crustal structure. As the interest in detailed shallow crustal structure imaging has increased, dense seismic array methods have become increasingly efficient. This study used a high-density seismic array deployed in the Xinjiang basin in southeastern China, to record seismic data, which was then processed with the ambient noise tomography method. The high-density seismic array contained 203 short-period seismometers, spaced at short intervals(~ 400 m). The array collected continuous records of ambient noise for 32 days. Data preprocessing,cross correlation calculation, and Rayleigh surface wave phase-velocity dispersion curve extraction, yielded more than 16,000 Rayleigh surface wave phase-velocity dispersion curves, which were then analyzed using the direct-inversion method. Checkerboard tests indicate that the shear wave velocity is recovered in the study area, at depths of 0–1.4 km,with a lateral image resolution of ~ 400 m. Model test results show that the seismic array effectively images a 50 m thick slab at a depth of 0–300 m, a 150 m thick anomalous body at a depth of 300–600 m, and a 400 m thick anomalous body at a depth of 0.6–1.4 km. The shear wave velocity profile reveals features very similar to those detected by a deep seismic reflection profile across the study area. This demonstrates that analysis of shallow crustal velocity structure provides high-resolution imaging of crustal features.Thus, ambient noise tomography with a high-density seismic array may play an important role in imaging shallow crustal structure. 展开更多
关键词 high-density seismic array ambient noise tomography shallow crustal structure HIGH-RESOLUTION
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部