The aerospace community widely uses difficult-to-cut materials,such as titanium alloys,high-temperature alloys,metal/ceramic/polymer matrix composites,hard and brittle materials,and geometrically complex components,su...The aerospace community widely uses difficult-to-cut materials,such as titanium alloys,high-temperature alloys,metal/ceramic/polymer matrix composites,hard and brittle materials,and geometrically complex components,such as thin-walled structures,microchannels,and complex surfaces.Mechanical machining is the main material removal process for the vast majority of aerospace components.However,many problems exist,including severe and rapid tool wear,low machining efficiency,and poor surface integrity.Nontraditional energy-assisted mechanical machining is a hybrid process that uses nontraditional energies(vibration,laser,electricity,etc)to improve the machinability of local materials and decrease the burden of mechanical machining.This provides a feasible and promising method to improve the material removal rate and surface quality,reduce process forces,and prolong tool life.However,systematic reviews of this technology are lacking with respect to the current research status and development direction.This paper reviews the recent progress in the nontraditional energy-assisted mechanical machining of difficult-to-cut materials and components in the aerospace community.In addition,this paper focuses on the processing principles,material responses under nontraditional energy,resultant forces and temperatures,material removal mechanisms,and applications of these processes,including vibration-,laser-,electric-,magnetic-,chemical-,advanced coolant-,and hybrid nontraditional energy-assisted mechanical machining.Finally,a comprehensive summary of the principles,advantages,and limitations of each hybrid process is provided,and future perspectives on forward design,device development,and sustainability of nontraditional energy-assisted mechanical machining processes are discussed.展开更多
High-mass fraction silicon aluminium composite(Si/Al composite) has unique properties of high specific strength, low thermal expansion coefficient, excellent wear resistance and weldability. It has attracted many appl...High-mass fraction silicon aluminium composite(Si/Al composite) has unique properties of high specific strength, low thermal expansion coefficient, excellent wear resistance and weldability. It has attracted many applications in terms of radar communication, aerospace and automobile industry. However, rapid tool wear resulted from high cutting force and hard abrasion, and damaged machined surfaces are the main problem in machining Si/Al composite. This work aims to reveal the mechanisms of milling-induced damages of 70wt% Si/Al composites. A cutting force analytical model considering the characteristics of both the primary silicon particles and the cutting-edge radius was established. Milling experiments were conducted to verify the validity of the model. The results show that the analytical model exhibits a good consistency with the experimental results, and the error is about 10%. The cutting-edge radius has significant effects on the cutting force, surface roughness and damage formation. With the increase in the cutting-edge radius, both the cutting force and the surface roughness decrease firstly and then increase. When the cutting-edge radius is 27 μm, the surface roughness(Sa) reaches the minimum of 2.3 μm.Milling-induced surface damages mainly contain cracks, pits, scratches, matrix coating and burrs.The damage formation is dominated by the failure mode of primary silicon particles, which includes compressive breakage, intragranular fracture, particle pull-out, and interface debonding. In addition, the high ductility of aluminium matrix leads to matrix coating. This work provides guidance for tool selection and damage inhibition in high-efficiency and high-precision machining of high mass fraction Si/Al composites.展开更多
基金supported by the National Natural Science Foundation of China(Nos.52075255,92160301,52175415,52205475,and 92060203)。
文摘The aerospace community widely uses difficult-to-cut materials,such as titanium alloys,high-temperature alloys,metal/ceramic/polymer matrix composites,hard and brittle materials,and geometrically complex components,such as thin-walled structures,microchannels,and complex surfaces.Mechanical machining is the main material removal process for the vast majority of aerospace components.However,many problems exist,including severe and rapid tool wear,low machining efficiency,and poor surface integrity.Nontraditional energy-assisted mechanical machining is a hybrid process that uses nontraditional energies(vibration,laser,electricity,etc)to improve the machinability of local materials and decrease the burden of mechanical machining.This provides a feasible and promising method to improve the material removal rate and surface quality,reduce process forces,and prolong tool life.However,systematic reviews of this technology are lacking with respect to the current research status and development direction.This paper reviews the recent progress in the nontraditional energy-assisted mechanical machining of difficult-to-cut materials and components in the aerospace community.In addition,this paper focuses on the processing principles,material responses under nontraditional energy,resultant forces and temperatures,material removal mechanisms,and applications of these processes,including vibration-,laser-,electric-,magnetic-,chemical-,advanced coolant-,and hybrid nontraditional energy-assisted mechanical machining.Finally,a comprehensive summary of the principles,advantages,and limitations of each hybrid process is provided,and future perspectives on forward design,device development,and sustainability of nontraditional energy-assisted mechanical machining processes are discussed.
基金supported by the National Natural Science Foundation of China(No.52075255)the Fundamental Research Funds for the Central Universities(No.NT2021020)。
文摘High-mass fraction silicon aluminium composite(Si/Al composite) has unique properties of high specific strength, low thermal expansion coefficient, excellent wear resistance and weldability. It has attracted many applications in terms of radar communication, aerospace and automobile industry. However, rapid tool wear resulted from high cutting force and hard abrasion, and damaged machined surfaces are the main problem in machining Si/Al composite. This work aims to reveal the mechanisms of milling-induced damages of 70wt% Si/Al composites. A cutting force analytical model considering the characteristics of both the primary silicon particles and the cutting-edge radius was established. Milling experiments were conducted to verify the validity of the model. The results show that the analytical model exhibits a good consistency with the experimental results, and the error is about 10%. The cutting-edge radius has significant effects on the cutting force, surface roughness and damage formation. With the increase in the cutting-edge radius, both the cutting force and the surface roughness decrease firstly and then increase. When the cutting-edge radius is 27 μm, the surface roughness(Sa) reaches the minimum of 2.3 μm.Milling-induced surface damages mainly contain cracks, pits, scratches, matrix coating and burrs.The damage formation is dominated by the failure mode of primary silicon particles, which includes compressive breakage, intragranular fracture, particle pull-out, and interface debonding. In addition, the high ductility of aluminium matrix leads to matrix coating. This work provides guidance for tool selection and damage inhibition in high-efficiency and high-precision machining of high mass fraction Si/Al composites.