期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Effect of reprocessing on neutrons of a molten chloride salt fast reactor
1
作者 liao-yuan he Yong Cui +4 位作者 Liang Chen Shao-Peng Xia Lin-Yi Hu Yang Zou Rui Yan 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2023年第3期154-170,共17页
Due to their unique features,such as the inherent safety,simplified fuel cycle,and continuous on-line reprocessing,molten salt reactors(MSRs)are regarded as one of the six reference reactors in the Generation IV Inter... Due to their unique features,such as the inherent safety,simplified fuel cycle,and continuous on-line reprocessing,molten salt reactors(MSRs)are regarded as one of the six reference reactors in the Generation IV International Forum(GEN-IV).Molten chloride salt fast reactors(MCFRs)are a type of MSR.Compared to molten fluoride salt reactors(MFSRs),MCFRs have a higher solubility of heavy metal atoms,a harder neutron spectrum,lower accumulation of fission products(FPs),and better breeding and transmutation performance.Thus,MCFRs have been recognized as a type of MSR with great prospects for future development.However,as the most important feature for MSRs,the effect of different reprocessing modes on MCFRs must be researched in depth.As such,this study investigated the effect of different isotopes,especially FPs,on the neutronic performance of an MCFR,such as its breeding performance.Furthermore,the characteristics of the different reprocessing modes and MCFR rates were analyzed in terms of safety,radioactivity level,neutron economy,and breeding capacity.In the end,a reprocessing method suitable for MCFRs was determined through calculation and analysis,which provides a reference for the further research of MCFRs. 展开更多
关键词 Molten chloride salt fast reactor(MCFR) On-line reprocessing Batch-reprocessing Breeding ratio(BR) Doubling time(DT)
下载PDF
Effect of 37Cl enrichment on neutrons in a molten chloride salt fast reactor 被引量:2
2
作者 liao-yuan he Guang-Chao Li +3 位作者 Shao-Peng Xia Jin-Gen Chen Yang Zou Gui-Min Liu 《Nuclear Science and Techniques》 SCIE CAS CSCD 2020年第3期45-56,共12页
A molten chloride salt fast reactor(MCFR)is well suited to fuel breeding and the transmutation of transuranium(TRU)elements owing to its advantageous features of fast neutron spectrum and high TRU solubility.However,t... A molten chloride salt fast reactor(MCFR)is well suited to fuel breeding and the transmutation of transuranium(TRU)elements owing to its advantageous features of fast neutron spectrum and high TRU solubility.However,the neutron absorption cross section of 35Cl is approximately 1000 times greater than for 37Cl,which has a significant impact on the neutron physical characteristics of a MCFR.Based on an automatic online refueling and reprocessing procedure,the influences of 37Cl enrichment on neutron economy,breeding performance,and the production of harmful nuclides were analyzed.Results show that 37Cl enrichment strongly influences the neutron properties of a MCFR.With natural chlorine,233U breeding cannot be achieved and the yields of S and 36Cl are very high.Increasing the 37Cl enrichment to 97%brings a clear improvement in its neutronics property,making it almost equal to that corresponding to 100%enrichment.Moreover,when 37Cl is enriched to 99%,its neutronics parameters are almost the same as for 100%enrichment.Considering the enrichment cost and the neutron properties,a 37Cl enrichment of 97%is recommended.Achieving an optimal neutronics performance requires 99%37Cl enrichment. 展开更多
关键词 Molten salt reactor Molten chlorine salt fast reactor 37Cl enrichment Th-U fuel breeding
下载PDF
Study on the production characteristics of(131)^I and(90)^Sr isotopes in a molten salt reactor 被引量:1
3
作者 Liang Chen Rui Yan +5 位作者 Xu-Zhong Kang Gui-Feng Zhu Bo Zhou liao-yuan he Yang Zou Hong-Jie Xu 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2021年第3期120-128,共9页
The production of radionuclides(90)^Sr and(131)^I in molten salt reactors is an attractive option to address the global shortage of radionuclides.This study evaluated the production characteristics of(90)^Sr and(131)^... The production of radionuclides(90)^Sr and(131)^I in molten salt reactors is an attractive option to address the global shortage of radionuclides.This study evaluated the production characteristics of(90)^Sr and(131)^I in a modular molten salt reactor,such as equilibrium time,yield,and cooling time of isotopic impurities.The fuel burn-up of a small modular molten salt reactor was analyzed by the Triton module of the scale program,and the variation in the fission yields of the two nuclides and their precursors with burn-up time.The yield of(131)^I and~(131)Te has been increasing during the lifetime.131 I has an equilibrium time of about 40 days,a saturation activity of about 40,300 TBq,and while~(131)Te takes 250 min to reach equilibrium,the equilibrium activity was about 38,000 TBq.The yields of90 Sr and~(90)Kr decreased gradually,the equilibrium time of90 Kr was short,and(90)^Sr could not reach equilibrium.Based on the experimental data of molten salt reactor experiment,the amount of nuclide migration to the tail gas and the corresponding cooling time of the isotope impurities under different extraction methods were estimated.Using the HF-H_2 bubbling method,3.49×10^(5)TBq of(131)^I can be extracted from molten salt every year,and after13 days of cooling,the impurity content meets the medical requirements.Using the electric field method,1296 TBq of(131)^I can be extracted from the off-gas system(its cooling time is 11 days)and 109 TBq of(90)^Sr.The yields per unit power for(131)^I and(90)^Sr is approximately 1350 TBq/MW and 530 TBq/MW,respectively,which shows that molten salt reactors have a high economic value. 展开更多
关键词 Molten salt reactor (131)^I (90)^Sr Nuclide production
下载PDF
Th–U cycle performance analysis based on molten chloride salt and molten fluoride salt fast reactors 被引量:1
4
作者 liao-yuan he Shao-Peng Xia +4 位作者 Xue-Mei Zhou Jin-Gen Chen Gui-Min Liu Yang Zou Rui Yan 《Nuclear Science and Techniques》 SCIE CAS CSCD 2020年第8期116-128,共13页
The recent development of molten salt fast reactors has generated a renewed interest in them. As compared to traditional solid fuel fast neutron systems, it has many unique advantages, e.g., lower fissile inventory,no... The recent development of molten salt fast reactors has generated a renewed interest in them. As compared to traditional solid fuel fast neutron systems, it has many unique advantages, e.g., lower fissile inventory,no initial criticality reserve, waste reduction, and a simplified fuel cycle. It has been recognized as an ideal reactor for achieving a closed Th–U cycle. Based on the carrier salt, molten salt fast reactors could be divided into either a molten chloride salt fast reactor(MCFR) or a molten fluoride salt fast reactor(MFFR);to compare their Th–U cycle performance, the neutronic parameters in a breeding and burning(B&B) transition scenario were studied based on similar core geometry and power. The results demonstrated that the required reprocessing rate for an MCFR to achieve self-breeding was lower than that of an MFFR.Moreover, the breeding capability of an MCFR was better than that of an MFFR;at a reprocessing rate of 40 L/day,using LEU and Pu as start-up fissile materials, the doubling time(DT) of an MFFR and MCFR were 88.0 years and 48.0 years, and 16.5 years and 16.2 years, respectively.Besides, an MCFR has lower radio-toxicity due to lower buildup of fission products(FPs) and transuranium(TRU),while an MFFR has a larger, delayed neutron fraction with smaller changes during the entire operation. 展开更多
关键词 Th–U cycle Molten salt fast reactor Breeding capability Doubling time
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部