In this study, we investigated the effect of different types of light and MeJA treatment on the accumulation of betulin and oleanolic acid in various organs of white birch. Our results showed that betulin and oleanoli...In this study, we investigated the effect of different types of light and MeJA treatment on the accumulation of betulin and oleanolic acid in various organs of white birch. Our results showed that betulin and oleanolic were accumulated mainly in the stalk skin. The content of both substances in the stalk skin was significantly affected by seasons with a peak accumulation in August. The content of oleanolic and betulin was significantly decreased in the stem skin treated with 4 types of light (red, yellow, blue and green) compared with the plant with normal illumination. In contrast, oleanolic acid in leaves was increased by 13.28 folds when the white birch was treated with green light. Betulin was increased by 1.959 folds in leaves of white birch treated with blue light. The highest content of betulin and oleanolic acid in various organs of birch with appropriate shading treatment (light transmittance: 50%) was increased by 45.09% and 30.50%, respectively, in comparison with those with non-shading treatment. Content of oleanolic acid and betulin can be significantly improved in various parts of birch after treatment with different concentration of MeJA. The study lays the foundation to metabolic regulation of oleanolic acid and betulin in birch.展开更多
文摘In this study, we investigated the effect of different types of light and MeJA treatment on the accumulation of betulin and oleanolic acid in various organs of white birch. Our results showed that betulin and oleanolic were accumulated mainly in the stalk skin. The content of both substances in the stalk skin was significantly affected by seasons with a peak accumulation in August. The content of oleanolic and betulin was significantly decreased in the stem skin treated with 4 types of light (red, yellow, blue and green) compared with the plant with normal illumination. In contrast, oleanolic acid in leaves was increased by 13.28 folds when the white birch was treated with green light. Betulin was increased by 1.959 folds in leaves of white birch treated with blue light. The highest content of betulin and oleanolic acid in various organs of birch with appropriate shading treatment (light transmittance: 50%) was increased by 45.09% and 30.50%, respectively, in comparison with those with non-shading treatment. Content of oleanolic acid and betulin can be significantly improved in various parts of birch after treatment with different concentration of MeJA. The study lays the foundation to metabolic regulation of oleanolic acid and betulin in birch.