Kiwifruit(Actinidia spp.)plants produce economically important fruits containing abundant,balanced phytonutrients with extraordinarily high vitamin C contents.Since the release of the first kiwifruit reference genome ...Kiwifruit(Actinidia spp.)plants produce economically important fruits containing abundant,balanced phytonutrients with extraordinarily high vitamin C contents.Since the release of the first kiwifruit reference genome sequence in 2013,large volumes of genome and transcriptome data have been rapidly accumulated for a handful of kiwifruit species.To efficiently store,analyze,integrate,and disseminate these large-scale datasets to the research community,we constructed the Kiwifruit Genome Database(KGD;http://kiwifruitgenome.org/).The database currently contains all publicly available genome and gene sequences,gene annotations,biochemical pathways,transcriptome profiles derived from public RNA-Seq datasets,and comparative genomic analysis results such as syntenic blocks and homologous gene pairs between different kiwifruit genome assemblies.A set of user-friendly query interfaces,analysis tools and visualization modules have been implemented in KGD to facilitate translational and applied research in kiwifruit,which include JBrowse,a popular genome browser,and the NCBI BLAST sequence search tool.Other notable tools developed within KGD include a genome synteny viewer and tools for differential gene expression analysis as well as gene ontology(GO)term and pathway enrichment analysis.展开更多
Flowers are an essential organ for sexual reproduction of higher plants.Severe lesions along with flower blight on tea(Camellia sinensis)plants were observed in the experimental tea plantation located in Hefei(China)....Flowers are an essential organ for sexual reproduction of higher plants.Severe lesions along with flower blight on tea(Camellia sinensis)plants were observed in the experimental tea plantation located in Hefei(China).The pathogens isolated from diseased flowers matched the morphological peculiarity of Alternaria alternata.The species characteristics of A.alternata were further confirmed by both pathogenicity tests and multi-gene phylogenetic analyses by using internal transcribed spacer(ITS),glyceraldehyde-3-phosphate dehydrogenase(GAPDH)and betatubulin(TUB).The combined phylogeny analysis using sequences derived from the ITS,GAPDH and TUB showed that the isolated pathogens belong to the genus Alternaria.Pathogenicity tests conducted on healthy tea flowers and leaves manifested typical symptoms of flower blight while weaker symptoms of leaf spot,demonstrating the A.alternata isolates were the causal agents of flower blight disease on tea plants.This fungus is first reported as a pathogen causing flower blight on C.sinensis in this study.展开更多
Wound dressing materials which are capable of meeting the demands of accelerating wound closure and promoting wound healing process have being highly desired.Electrospun nanofibrous materials show great application po...Wound dressing materials which are capable of meeting the demands of accelerating wound closure and promoting wound healing process have being highly desired.Electrospun nanofibrous materials show great application potentials for wound healing owing to relatively large surface area,better mimicry of native extracellular matrix,adjustable waterproofness and breathability,and programmable drug delivery process.In this review article,we begin with a discussion of wound healing process and current commercial wound dressing materials.Then,we emphasize on electrospun nanofibrous materials for wound dressing,covering the efforts for controlling fiber alignment and morphology,constructing 3D scaffolds,developing waterproof-breathable membrane,governing drug delivery performance,and regulating stem cell behavior.Finally,we finish with challenges and future prospects of electrospun nanofibrous materials for wound dressings.展开更多
Hydrophobic interaction chromatography(HIC)as an indispensable method for protein purification has attracted considerable attentions of researchers as well as biopharmaceutical industries.However,the low binding capac...Hydrophobic interaction chromatography(HIC)as an indispensable method for protein purification has attracted considerable attentions of researchers as well as biopharmaceutical industries.However,the low binding capacity and slow adsorption rate of the currently available HIC media lead to a little supply and high price of the highly purified proteins.Herein,nanofibrous membranes with hydrophobic binding sites were developed for HIC by directly coupling phenyl glycidyl ether on the hydrolyzed cellulose acetate nanofiber membrane(cellulose-phenyl NFM).Scanning electron microscope(SEM),water contact angle(WCA),Fourier transform infrared(FTIR),thermogravimetric analysis(TGA),Brunauer-Emmett-Teller(BET)surface area analysis and capillary flow porometer(CFP)were applied to evaluate the physically and chemically structural transformation.The obtained cellulose-phenyl NFMs showed a proper hydrophilcity(WCA=37°),a relatively high BET surface area(3.6 times the surface area of commercial fibrous membranes),and tortuous-channel structure with through-hole size in the range of 0.25-1.2μm,which led to a little non-specificity adsorption,high bovine serum albumin adsorption capacity of 118 mg g^(−1),fast adsorption process within 12 h,good long-term stability and reusability.Moreover,compared with traditional modification methods which always include activation and graft two steps,direct coupling method is more efficient for HIC media fabrication.Therefore,cellulose-phenyl NFMs with outstanding protein adsorption performance could be a kind of promising candidate for HIC.展开更多
Hierarchical porous patterns have been fabricated on the C face, Si face, and cross section of n-type 6H-SiC crystal via photo-electrochemical etching using HF/C2H5OH and HF/H2O2 as electrolytes. The porous layer disp...Hierarchical porous patterns have been fabricated on the C face, Si face, and cross section of n-type 6H-SiC crystal via photo-electrochemical etching using HF/C2H5OH and HF/H2O2 as electrolytes. The porous layer displayed multiple and multiscale microstructures on different faces, including stalactite-like, sponge-like and dendritic porous structures on C face, echinoid micro-patterns on Si face, and columnar and keel-shaped micro-patterns on the cross section. The formation of hierarchical porous pattern is ascribed to the dynamic competition balance between the electrochemical oxidation rate and the oxide removal rate. It was found that increasing the ionic strength of the electrolyte can obviously disturb the surface morphology of the porous SiC during the photo-electrochemical etching. Possible mechanisms for selective etching were further discussed.展开更多
基金supported by grants from the National Natural Science Foundation of China(31972474,31671259,31471157,31900257,31400049,and 90717110)the Anhui Provincial Natural Science Foundation(1808085QC68)+5 种基金the National Foundation for the Germplasm Repository of Special Horticultural Crops in Central Mountain Areas of China(NJF2017-69)the National Science Fund for Distinguished Young Scholars(30825030)Key Project of the Government of Sichuan Province(2013NZ0014)Key Project of the Government of Anhui Province(2012AKKG07391808085MC57)the US National Science Foundation(IOS-1339287 and IOS-1855585).
文摘Kiwifruit(Actinidia spp.)plants produce economically important fruits containing abundant,balanced phytonutrients with extraordinarily high vitamin C contents.Since the release of the first kiwifruit reference genome sequence in 2013,large volumes of genome and transcriptome data have been rapidly accumulated for a handful of kiwifruit species.To efficiently store,analyze,integrate,and disseminate these large-scale datasets to the research community,we constructed the Kiwifruit Genome Database(KGD;http://kiwifruitgenome.org/).The database currently contains all publicly available genome and gene sequences,gene annotations,biochemical pathways,transcriptome profiles derived from public RNA-Seq datasets,and comparative genomic analysis results such as syntenic blocks and homologous gene pairs between different kiwifruit genome assemblies.A set of user-friendly query interfaces,analysis tools and visualization modules have been implemented in KGD to facilitate translational and applied research in kiwifruit,which include JBrowse,a popular genome browser,and the NCBI BLAST sequence search tool.Other notable tools developed within KGD include a genome synteny viewer and tools for differential gene expression analysis as well as gene ontology(GO)term and pathway enrichment analysis.
基金the National Natural Science Foundation of China(31900257,31972474).
文摘Flowers are an essential organ for sexual reproduction of higher plants.Severe lesions along with flower blight on tea(Camellia sinensis)plants were observed in the experimental tea plantation located in Hefei(China).The pathogens isolated from diseased flowers matched the morphological peculiarity of Alternaria alternata.The species characteristics of A.alternata were further confirmed by both pathogenicity tests and multi-gene phylogenetic analyses by using internal transcribed spacer(ITS),glyceraldehyde-3-phosphate dehydrogenase(GAPDH)and betatubulin(TUB).The combined phylogeny analysis using sequences derived from the ITS,GAPDH and TUB showed that the isolated pathogens belong to the genus Alternaria.Pathogenicity tests conducted on healthy tea flowers and leaves manifested typical symptoms of flower blight while weaker symptoms of leaf spot,demonstrating the A.alternata isolates were the causal agents of flower blight disease on tea plants.This fungus is first reported as a pathogen causing flower blight on C.sinensis in this study.
基金This work was supported by the National Natural Science Foundation of China(81771338)Natural Science Foundation of Shanghai(19ZR1470500)+1 种基金the Science and Technology Commission of Shanghai Municipality(18511109500)the Fundamental Research Funds for the Central Universities(223201900081).
文摘Wound dressing materials which are capable of meeting the demands of accelerating wound closure and promoting wound healing process have being highly desired.Electrospun nanofibrous materials show great application potentials for wound healing owing to relatively large surface area,better mimicry of native extracellular matrix,adjustable waterproofness and breathability,and programmable drug delivery process.In this review article,we begin with a discussion of wound healing process and current commercial wound dressing materials.Then,we emphasize on electrospun nanofibrous materials for wound dressing,covering the efforts for controlling fiber alignment and morphology,constructing 3D scaffolds,developing waterproof-breathable membrane,governing drug delivery performance,and regulating stem cell behavior.Finally,we finish with challenges and future prospects of electrospun nanofibrous materials for wound dressings.
基金This work was supported by the National Natural Science Foundation of China(Grant Nos.51673037,51873029,and 81771338)the Science and Technology Commission of Shanghai Municipality(Grant No.18511109500).
文摘Hydrophobic interaction chromatography(HIC)as an indispensable method for protein purification has attracted considerable attentions of researchers as well as biopharmaceutical industries.However,the low binding capacity and slow adsorption rate of the currently available HIC media lead to a little supply and high price of the highly purified proteins.Herein,nanofibrous membranes with hydrophobic binding sites were developed for HIC by directly coupling phenyl glycidyl ether on the hydrolyzed cellulose acetate nanofiber membrane(cellulose-phenyl NFM).Scanning electron microscope(SEM),water contact angle(WCA),Fourier transform infrared(FTIR),thermogravimetric analysis(TGA),Brunauer-Emmett-Teller(BET)surface area analysis and capillary flow porometer(CFP)were applied to evaluate the physically and chemically structural transformation.The obtained cellulose-phenyl NFMs showed a proper hydrophilcity(WCA=37°),a relatively high BET surface area(3.6 times the surface area of commercial fibrous membranes),and tortuous-channel structure with through-hole size in the range of 0.25-1.2μm,which led to a little non-specificity adsorption,high bovine serum albumin adsorption capacity of 118 mg g^(−1),fast adsorption process within 12 h,good long-term stability and reusability.Moreover,compared with traditional modification methods which always include activation and graft two steps,direct coupling method is more efficient for HIC media fabrication.Therefore,cellulose-phenyl NFMs with outstanding protein adsorption performance could be a kind of promising candidate for HIC.
基金supported by the National Basic Research Program of China(Nos.2011CB301904 and 2009CB930503)the National Natural Science Foundation of China(Nos. 51021062 and 11134006)
文摘Hierarchical porous patterns have been fabricated on the C face, Si face, and cross section of n-type 6H-SiC crystal via photo-electrochemical etching using HF/C2H5OH and HF/H2O2 as electrolytes. The porous layer displayed multiple and multiscale microstructures on different faces, including stalactite-like, sponge-like and dendritic porous structures on C face, echinoid micro-patterns on Si face, and columnar and keel-shaped micro-patterns on the cross section. The formation of hierarchical porous pattern is ascribed to the dynamic competition balance between the electrochemical oxidation rate and the oxide removal rate. It was found that increasing the ionic strength of the electrolyte can obviously disturb the surface morphology of the porous SiC during the photo-electrochemical etching. Possible mechanisms for selective etching were further discussed.