Spectroscopy is a well-established nonintrusive tool that has played an important role in identifying and quantifying substances,from quantum descriptions to chemical and biomedical diagnostics.Challenges exist in acc...Spectroscopy is a well-established nonintrusive tool that has played an important role in identifying and quantifying substances,from quantum descriptions to chemical and biomedical diagnostics.Challenges exist in accurate spectrum analysis in free space,which hinders us from understanding the composition of multiple gases and the chemical processes in the atmosphere.A photon-counting distributed free-space spectroscopy is proposed and demonstrated using lidar technique,incorporating a comb-referenced frequency-scanning laser and a superconducting nanowire single-photon detector.It is suitable for remote spectrum analysis with a range resolution over a wide band.As an example,a continuous field experiment is carried out over 72 h to obtain the spectra of carbon dioxide(CO_(2))and semi-heavy water(HDO,isotopic water vapor)in 6 km,with a range resolution of 60 m and a time resolution of 10 min.Compared to the methods that obtain only column-integrated spectra over kilometer-scale,the range resolution is improved by 2-3 orders of magnitude in this work.The CO_(2)and HDO concentrations are retrieved from the spectra acquired with uncertainties as low as±1.2%and±14.3%,respectively.This method holds much promise for increasing knowledge of atmospheric environment and chemistry researches,especially in terms of the evolution of complex molecular spectra in open areas.展开更多
Targeting bromodomain-containing protein 4(BRD4) has been proved to be an effective strategy for cancer therapy.To date,numerous BRD4 inhibitors and degraders have been identified,some of which have advanced into clin...Targeting bromodomain-containing protein 4(BRD4) has been proved to be an effective strategy for cancer therapy.To date,numerous BRD4 inhibitors and degraders have been identified,some of which have advanced into clinical trials.In this work,a focused library of new [1,2,4]triazolo [1,5-a]pyrimidine derivatives were discovered to be able to inhibit BRD4.WS-722 inactivated BRD4(BD1/BD2),BRD2(BD1/BD2) and BRD3(BD1/BD2) broadly with the IC_(50) values less than 5 μmol/L.Besides,WS-722 inhibited growth of THP-1 cells with an IC_(50) value of 3.86 μmol/L.Like(+)-JQ1,WS-722 inhibited BRD4 in a reversible manner and enhanced protein stability.Docking studies showed that WS-722 occupied the central acetyl-lysine(Kac) binding cavity and formed a hydrogen bond with Asn140.In THP-1 cells,WS-722 showed target engagement to BRD4.Cellular effects of WS-722 on THP-1 cells were also examined,showing that WS-722 could block c-MYC expression,induce G0/G1 phase arrest and p21 up-regulation,and promote differentiation of THP-1 cells.BRD4 inhibition by WS-722 resulted in cell apoptosis and upregulated expression of cleaved caspased-3/7 and PARP in THP-1 cell lines.The [1,2,4]triazolo[1,5-a]pyrimidine is a new template for the development of new BRD4 inhibitors.展开更多
With increasing demand for renewable energy,graphene-like BC_(3) monolayer as high performance electrode materials for lithium and sodium batteries are drawing more attention recently.However,its structural stability,...With increasing demand for renewable energy,graphene-like BC_(3) monolayer as high performance electrode materials for lithium and sodium batteries are drawing more attention recently.However,its structural stability,potassium storage properties and strain effect on adsorption properties of alkali metal ions have not been reported yet.In this work,phonon spectra,AIMD simulations and elastic constants of graphene-like BC_(3) monolayer are investigated.Our results show that graphene-like BC_(3) monolayer possesses excellent structural stability and the maximum theoretical potassium storage capacity can reach up to 1653 mAh/g with the corresponding open circuit voltages 0.66 V.Due to potassium atom can be effectively adsorbed at the most energetically favorable h-CC site with obvious charge transfer,making adsorbed graphene-like BC_(3) monolayer change from semiconductor to metal which is really good for electrode utilization.Moreover,the migrations potassium atom on the graphene-like BC_(3) monolayer is rather fast with the diffusion barriers as low as 0.12 eV,comparing lithium atom with a relatively large diffusion barrier of 0.46 eV.Additionally,the tensile strains applied on the graphene-like BC3 monolayer have marginal effect on the adsorption and diffusion performances of lithium,sodium and potassium atoms.展开更多
基金This work was supported by The National Ten Thousand Talent Program in China.We are grateful to Nanjing Taixin Co.,Ltd.for financial support(91320191MA26A48Q5X).
文摘Spectroscopy is a well-established nonintrusive tool that has played an important role in identifying and quantifying substances,from quantum descriptions to chemical and biomedical diagnostics.Challenges exist in accurate spectrum analysis in free space,which hinders us from understanding the composition of multiple gases and the chemical processes in the atmosphere.A photon-counting distributed free-space spectroscopy is proposed and demonstrated using lidar technique,incorporating a comb-referenced frequency-scanning laser and a superconducting nanowire single-photon detector.It is suitable for remote spectrum analysis with a range resolution over a wide band.As an example,a continuous field experiment is carried out over 72 h to obtain the spectra of carbon dioxide(CO_(2))and semi-heavy water(HDO,isotopic water vapor)in 6 km,with a range resolution of 60 m and a time resolution of 10 min.Compared to the methods that obtain only column-integrated spectra over kilometer-scale,the range resolution is improved by 2-3 orders of magnitude in this work.The CO_(2)and HDO concentrations are retrieved from the spectra acquired with uncertainties as low as±1.2%and±14.3%,respectively.This method holds much promise for increasing knowledge of atmospheric environment and chemistry researches,especially in terms of the evolution of complex molecular spectra in open areas.
基金supported by the National Natural Science Foundation of China(Nos.81703326,81773562,81602961 and 81430085)Scientific Program of Henan Province(No.182102310123)China Postdoctoral Science Foundation(Nos.2018M630840 and 2019T120641)。
文摘Targeting bromodomain-containing protein 4(BRD4) has been proved to be an effective strategy for cancer therapy.To date,numerous BRD4 inhibitors and degraders have been identified,some of which have advanced into clinical trials.In this work,a focused library of new [1,2,4]triazolo [1,5-a]pyrimidine derivatives were discovered to be able to inhibit BRD4.WS-722 inactivated BRD4(BD1/BD2),BRD2(BD1/BD2) and BRD3(BD1/BD2) broadly with the IC_(50) values less than 5 μmol/L.Besides,WS-722 inhibited growth of THP-1 cells with an IC_(50) value of 3.86 μmol/L.Like(+)-JQ1,WS-722 inhibited BRD4 in a reversible manner and enhanced protein stability.Docking studies showed that WS-722 occupied the central acetyl-lysine(Kac) binding cavity and formed a hydrogen bond with Asn140.In THP-1 cells,WS-722 showed target engagement to BRD4.Cellular effects of WS-722 on THP-1 cells were also examined,showing that WS-722 could block c-MYC expression,induce G0/G1 phase arrest and p21 up-regulation,and promote differentiation of THP-1 cells.BRD4 inhibition by WS-722 resulted in cell apoptosis and upregulated expression of cleaved caspased-3/7 and PARP in THP-1 cell lines.The [1,2,4]triazolo[1,5-a]pyrimidine is a new template for the development of new BRD4 inhibitors.
基金partially supported by the National Natural Science Foundation of China (No.21503149)by the Program for Innovative Research Team in University of Tianjin (No.TD13-5074)+1 种基金by the Project of Hubei University of Arts and Science (No. 2020kypyfy015)Hubei Superior and Distinctive Discipline Group of "Mechatronics and Automobiles" (No.XKQ2020021)。
文摘With increasing demand for renewable energy,graphene-like BC_(3) monolayer as high performance electrode materials for lithium and sodium batteries are drawing more attention recently.However,its structural stability,potassium storage properties and strain effect on adsorption properties of alkali metal ions have not been reported yet.In this work,phonon spectra,AIMD simulations and elastic constants of graphene-like BC_(3) monolayer are investigated.Our results show that graphene-like BC_(3) monolayer possesses excellent structural stability and the maximum theoretical potassium storage capacity can reach up to 1653 mAh/g with the corresponding open circuit voltages 0.66 V.Due to potassium atom can be effectively adsorbed at the most energetically favorable h-CC site with obvious charge transfer,making adsorbed graphene-like BC_(3) monolayer change from semiconductor to metal which is really good for electrode utilization.Moreover,the migrations potassium atom on the graphene-like BC_(3) monolayer is rather fast with the diffusion barriers as low as 0.12 eV,comparing lithium atom with a relatively large diffusion barrier of 0.46 eV.Additionally,the tensile strains applied on the graphene-like BC3 monolayer have marginal effect on the adsorption and diffusion performances of lithium,sodium and potassium atoms.