Microglial activation that occurs rapidly after closed head injury may play important and complex roles in neuroinflammation-associated neuronal damage and repair.We previously reported that induced neural stem cells ...Microglial activation that occurs rapidly after closed head injury may play important and complex roles in neuroinflammation-associated neuronal damage and repair.We previously reported that induced neural stem cells can modulate the behavior of activated microglia via CXCL12/CXCR4 signaling,influencing their activation such that they can promote neurological recovery.However,the mechanism of CXCR4 upregulation in induced neural stem cells remains unclear.In this study,we found that nuclear factor-κB activation induced by closed head injury mouse serum in microglia promoted CXCL12 and tumor necrosis factor-αexpression but suppressed insulin-like growth factor-1 expression.However,recombinant complement receptor 2-conjugated Crry(CR2-Crry)reduced the effects of closed head injury mouse serum-induced nuclear factor-κB activation in microglia and the levels of activated microglia,CXCL12,and tumor necrosis factor-α.Additionally,we observed that,in response to stimulation(including stimulation by CXCL12 secreted by activated microglia),CXCR4 and Crry levels can be upregulated in induced neural stem cells via the interplay among CXCL12/CXCR4,Crry,and Akt signaling to modulate microglial activation.In agreement with these in vitro experimental results,we found that Akt activation enhanced the immunoregulatory effects of induced neural stem cell grafts on microglial activation,leading to the promotion of neurological recovery via insulin-like growth factor-1 secretion and the neuroprotective effects of induced neural stem cell grafts through CXCR4 and Crry upregulation in the injured cortices of closed head injury mice.Notably,these beneficial effects of Akt activation in induced neural stem cells were positively correlated with the therapeutic effects of induced neural stem cells on neuronal injury,cerebral edema,and neurological disorders post–closed head injury.In conclusion,our findings reveal that Akt activation may enhance the immunoregulatory effects of induced neural stem cells on microglial activation via upregulation of CXCR4 and Crry,thereby promoting induced neural stem cell–mediated improvement of neuronal injury,cerebral edema,and neurological disorders following closed head injury.展开更多
In tea plants,the abundant flavonoid compounds are responsible for the health benefits for the human body and define the astringent flavor profile.While the downstream mechanisms of flavonoid biosynthesis have been ex...In tea plants,the abundant flavonoid compounds are responsible for the health benefits for the human body and define the astringent flavor profile.While the downstream mechanisms of flavonoid biosynthesis have been extensively studied,the role of chalcone synthase(CHS)in this secondary metabolic process in tea plants remains less clear.In this study,we compared the evolutionary profile of the flavonoid metabolism pathway and discovered that gene duplication of CHS occurred in tea plants.We identified three CsCHS genes,along with a CsCHS-like gene,as potential candidates for further functional investigation.Unlike the CsCHS-like gene,the CsCHS genes effectively restored flavonoid production in Arabidopsis chs-mutants.Additionally,CsCHS transgenic tobacco plants exhibited higher flavonoid compound accumulation compared to their wild-type counterparts.Most notably,our examination of promoter and gene expression levels for the selected CHS genes revealed distinct responses to UV-B stress in tea plants.Our findings suggest that environmental factors such as UV-B exposure could have been the key drivers behind the gene duplication events in CHS.展开更多
Tree peony is a unique traditional f lower in China,with large,fragrant,and colorful f lowers.However,a relatively short and concentrated f lowering period limits the applications and production of tree peony.A genome...Tree peony is a unique traditional f lower in China,with large,fragrant,and colorful f lowers.However,a relatively short and concentrated f lowering period limits the applications and production of tree peony.A genome-wide association study(GWAS)was conducted to accelerate molecular breeding for the improvement of f lowering phenology traits and ornamental phenotypes in tree peony.A diverse panel of 451 tree peony accessions was phenotyped for 23 f lowering phenology traits and 4 f loral agronomic traits over 3 years.Genotyping by sequencing(GBS)was used to obtain a large number of genome-wide single-nucleotide polymorphisms(SNPs)(107050)for the panel genotypes,and 1047 candidate genes were identified by association mapping.Eighty-two related genes were observed during at least 2 years for f lowering,and seven SNPs repeatedly identified for multiple f lowering phenology traits over multiple years were highly significantly associated with five genes known to regulate f lowering time.We validated the temporal expression profiles of these candidate genes and highlighted their possible roles in the regulation of f lower bud differentiation and f lowering time in tree peony.This study shows that GWAS based on GBS can be used to identify the genetic determinants of complex traits in tree peony.The results expand our understanding of f lowering time control in perennial woody plants.Identification of markers closely related to these f lowering phenology traits can be used in tree peony breeding programs for important agronomic traits.展开更多
Breeding strategies of Acrossocheilus fasciatus were studied from 592 specimens collected monthly during May 2007 and April 2008 in the Puxi Stream of the Huangshan Mountain. Sex ratio of the studied population was 0....Breeding strategies of Acrossocheilus fasciatus were studied from 592 specimens collected monthly during May 2007 and April 2008 in the Puxi Stream of the Huangshan Mountain. Sex ratio of the studied population was 0.90 : 1 ( ♀ : ♂ ), not significantly different from 1 : 1. Both sexes reached their first sexual maturity at age 2 (the second calendar year of their birth). Fifty percent of females and males reached maturity at a total length of 69.75 mm and 69.36 mm respectively, and the minimum total length was 61.54 mm and 58.96 mm, respectively. Based on the monthly changes in gonado-somatic index and egg- development process, the breeding season of the population was from May to August, with one obvious interval (in June) occurring in the breeding activity for the females. The nonsynchronous development of oocytes observed in mature ovaries indicated that A. fasciatus is a batch spawner. Absolute fecundity of A. fasciatus ranged from 308 to 2002 eggs with a mean of 857 eggs, increased significantly with total length, and was significantly different among three age groups. Relative fecundity ranged from 38.63 to 71.70 egg/g with a mean of 53.29 egg/g, and was not significantly different among the three age groups. It was suggested that these reproductive characteristics were adaptive strategies for A. fasciatus to acclimatize to lotic water where environmental factors were unstable but predictable [ Current Zoology 55 (5) : 350 - 356, 2009].展开更多
Conventional rolling experiments via the embedded pin in rolling sheet method were carried out at different reduction rates,starting rolling temperatures,and rolling speeds,and the effects of rolling parameters(i.e.,t...Conventional rolling experiments via the embedded pin in rolling sheet method were carried out at different reduction rates,starting rolling temperatures,and rolling speeds,and the effects of rolling parameters(i.e.,temperature,equivalent strain,and rolling time)on dynamically recrystallized(DRX)microstructures of AZ31 alloy during hot rolling were studied quantitatively.The temperature-strain dependence of the high-angle grain boundary fraction(HAGB%)was examined through electron backscattered diffraction.Results showed that as-rolled microstructures with high HAGB%may be obtained under average rolling temperatures of 270-320℃,equivalent strains higher than 0.8,and a rolling speed of 246 mm/s.These results may be related to the DRX kinetics and dynamic recovery which are controlled by deformation temperature and strain.HAGB%decreased with increasing rolling time(decreasing rolling speed),which is attributed to dynamic recovery,and the recrystallized grain size decreased as rolling time increased.However,further increases in rolling time increased average grain sizes but decreased mean subgrain sizes;these results are attributed to increases in the low-angle grain boundary(LAGB)length per unit area with rolling time.LAGB formation was controlled by dynamic recovery,which consistently follows polygonization or formation of new subgrains inside larger grains;hence,average subgrain sizes decreased with the rolling time.The effect of dynamic recovery on HAGB and LAGB formation and their related mechanisms over a wide range of strains and temperatures were discussed in detail.展开更多
Tree peony(Paeonia section Moutan DC.)seeds are an excellent source of beneficial natural compounds that promote health,and they contain high levels of alpha-linolenic acid(ALA).In recent years,tree peony has been eme...Tree peony(Paeonia section Moutan DC.)seeds are an excellent source of beneficial natural compounds that promote health,and they contain high levels of alpha-linolenic acid(ALA).In recent years,tree peony has been emerging as an oil crop.Therefore,combined analysis of the transcriptome and proteome of tree peony(P.ostii)seeds at 25,32,39,53,67,81,88,95,and 109 days after pollination(DAP)was conducted to better understand the transcriptional and translational regulation of seed development and oil biosynthesis.A total of 38,482 unigenes and 2841 proteins were identified.A total of 26,912 differentially expressed genes(DEGs)and 592 differentially expressed proteins(DEPs)were clustered into three groups corresponding to the rapid growth,seed inclusion enrichment and conversion,and late dehydration and mature stages of seed development.Fifteen lipid metabolism pathways were identified at both the transcriptome and proteome levels.Pathway enrichment analysis revealed that a period of rapid fatty acid biosynthesis occurred at 53–88 DAP.Furthermore,211 genes and 35 proteins associated with the fatty acid metabolism pathway,63 genes and 11 proteins associated with the biosynthesis of unsaturated fatty acids(UFAs),and 115 genes and 24 proteins associated with ALA metabolism were identified.Phylogenetic analysis revealed that 16 putative fatty acid desaturase(FAD)-encoding genes clustered into four FAD groups,eight of which exhibited the highest expression at 53 DAP,suggesting that they play an important role in ALA accumulation.RT-qPCR analysis indicated that the temporal expression patterns of oil biosynthesis genes were largely similar to the RNA-seq results.The expression patterns of fatty acid metabolism-and seed development-related proteins determined by MRM were also highly consistent with the results obtained in the proteomic analysis.Correlation analysis indicated significant differences in the number and abundance of DEGs and DEPs but a high level of consistency in expression patterns and metabolic pathways.The results of the present study represent the first combined transcriptomic and proteomic analysis of tree peony seeds and provide insight into tree peony seed development and oil accumulation.展开更多
Highly efficient and stable bifunctional electrocatalysts that can be used for large-current-density electrolysis of alkaline seawater are highly desirable for carbon-neutral economies,but their facile and controllabl...Highly efficient and stable bifunctional electrocatalysts that can be used for large-current-density electrolysis of alkaline seawater are highly desirable for carbon-neutral economies,but their facile and controllable synthesis remains a challenge.Here,self-assembled ultralow Ru,Ni-doped Fe_(2)O_(3) with a lily shaped morphology was synthesized on iron foam(RuNi-Fe_(2)O_(3)/IF)via a facile one-step hydrothermal process,in which the intact lily shaped RuNi-Fe_(2)O_(3)/IF was obtained by adjusting the ratio of Ru/Ni.Benefitting from the Ru/Ni chemical substitution,the as-synthesized RuNi-Fe_(2)O_(3)/IF can act as free-standing dual-function electrodes that are applied to electrocatalysis for the hydrogen evolution(HER)and oxygen evolution reactions(OER)in 1.0 mol L^(-1) KOH,requiring an overpotential of 75.0 mV to drive 100 mA cm^(-2) for HER and 329.0 mV for OER.Moreover,the overall water splitting catalyzed by RuNi-Fe_(2)O_(3)/IF only demands ultralow cell voltages of 1.66 and 1.73 V to drive 100 mA cm^(-2) in 1.0 mol L^(-1) KOH and 1.0 mol L^(-1) KOH seawater electrolytes,respectively.The electrodes show remarkable long-term durability,maintaining current densities exceeding 100 mA cm^(-2) for more than 100 h and thus outperforming the two-electrode system composed of noble catalysts.This work provides an efficient,economical method to synthesize self-standing bifunctional electrodes for large-current-density alkaline seawater electrolysis,which is of significant importance for ecological protection and energy exploitation.展开更多
With the development of society and the progress of technology,more and more ocean activities are carried out.It results in booming of deep-sea diving.The use of helium-oxygen mixture(as a kind of breathing gas)solves...With the development of society and the progress of technology,more and more ocean activities are carried out.It results in booming of deep-sea diving.The use of helium-oxygen mixture(as a kind of breathing gas)solves the physiological problems of divers in saturated diving,but it brings about the Heliumspeech voice communication problem,the drop of speech intelligibility.There is no doubt that the effective speech communication must be provided for supporting the life and work of divers in deep-sea.This paper describes the mechanism of forming heliumspeech,discusses the effects of pressure and helium environment on the speech spectrum,compares the pros and cons of the time-domain and frequency-domain unscrambling techniques,shows the challenges in heliumspeech communications.Finally,it briefly introduces the deep learning,and points out that deep learning/machine learning may be a perfectly unscrambling technique.展开更多
This paper solves an energy-efficient optimization problem of a fixed-wing unmanned aerial vehicle(UAV) assisted full-duplex mobile relaying in maritime communication environments.Taking the speed and the acceleration...This paper solves an energy-efficient optimization problem of a fixed-wing unmanned aerial vehicle(UAV) assisted full-duplex mobile relaying in maritime communication environments.Taking the speed and the acceleration of the UAV and the information-causality constraints into consideration,the energy-efficiency of the system under investigation is maximized by jointly optimizing the UAV’s trajectory and the individual transmit power levels of the source and the UAV relay nodes.The optimization problem is non-convex and thus cannot be solved directly.Therefore,it is decoupled into two subproblems.One sub-problem is for the transmit power control at the source and the UAV relay nodes,and the other aims at optimizing the UAV s flight trajectory.By using the Lagrangian dual and Dinkelbach methods,the two sub-problems are solved,leading to an iterative algorithm for the joint design of transmit power control and trajectory optimization.Computer simulations demonstrated that by conducting the proposed algorithm,the flight trajectory of the UAV and the individual transmit power levels of the nodes can be flexibly adjusted according to the system conditions,and the proposed algorithm can achieve signiflcantly higher energy efficiency as compared with the other benchmark schemes.展开更多
Cognitive emergency communication net-works can meet the requirements of large capac-ity,high density and low delay in emergency com-munications.This paper analyzes the properties of emergency users in cognitive emerg...Cognitive emergency communication net-works can meet the requirements of large capac-ity,high density and low delay in emergency com-munications.This paper analyzes the properties of emergency users in cognitive emergency communi-cation networks,designs a multi-objective optimiza-tion and proposes a novel multi-objective bacterial foraging optimization algorithm based on effective area(MOBFO-EA)to maximize the transmission rate while maximizing the lifecycle of the network.In the algorithm,the effective area is proposed to prevent the algorithm from falling into a local optimum,and the diversity and uniformity of the Pareto-optimal solu-tions distributed in the effective area are used to eval-uate the optimization algorithm.Then,the dynamic preservation is used to enhance the competitiveness of excellent individuals and the uniformity and diversity of the Pareto-optimal solutions in the effective area.Finally,the adaptive step size,adaptive moving direc-tion and inertial weight are used to shorten the search time of bacteria and accelerate the optimization con-vergence.The simulation results show that the pro-posed MOBFO-EA algorithm improves the efficiency of the Pareto-optimal solutions by approximately 55%compared with the MOPSO algorithm and by approx-imately 60%compared with the MOBFO algorithm and has the fastest and smoothest convergence.展开更多
Tree peony(Paeonia suffruticosa Andr.)is a unique aromatic plant famous for its huge flowers,bright colors and strong fragrance,having high ornamental,medicinal,and edible value.Research on tree peony's flower fra...Tree peony(Paeonia suffruticosa Andr.)is a unique aromatic plant famous for its huge flowers,bright colors and strong fragrance,having high ornamental,medicinal,and edible value.Research on tree peony's flower fragrance has mainly focused on the comparative analysis among its varieties,leaving the inheritance of aroma compounds in this plant an overlooked area of study.Here,the volatile components of flowers at three different flowering stages of the light fragrance-type cultivar P.ostii'Fengdan'and the strong fragrance-type cultivar P.suffruticosa'Chunguihuawu',as well as the half-opening stage flowers of 109 F_(1) progeny,were collected and characterized in-depth by dynamic headspace sampling technique combined with gas chromatography-mass spectrometry(GC-MS).Diverse profiles of volatiles that included alcohols,esters,aldehydes,terpenes,benzenes,and hydrocarbons were identified from the evaluated accessions.These results revealed that the volatile components and content of parents were significantly different,and that hybridization generated more complex volatile components.Most volatile compounds in the hybrids,especially the main aromatic components,existed in at least one of the parents,being characterized by intermediate or transgressive inheritance for the floral trait;this demonstrated that volatile compounds can be inherited from parents to progeny.Further,seven de novo aroma compounds—those present in progeny yet absent in their parents—were found in progeny.This study preliminarily clarified the segregation performance of aroma traits in tree peony hybrids,which might provide a theoretical basis for selecting breeding parents and the breeding of new varieties for aroma traits.展开更多
The MYB4 transcription factor family regulates plant traits.However,their overexpression often results in undesirable side effects like growth reduction.We have reported a green tea(Camellia sinensis)MYB4 transcriptio...The MYB4 transcription factor family regulates plant traits.However,their overexpression often results in undesirable side effects like growth reduction.We have reported a green tea(Camellia sinensis)MYB4 transcription factor(CsMYB4)that represses the phenylpropanoid and shikimate pathways and stunts plant growth and development.In the current study,we observed that in CsMYB4a transgenic tobacco(Nicotiana tabacum)plants,primary metabolism was altered,including sugar and amino acid metabolism,which demonstrated a pleiotropic regulation by CsMYB4a.The CsMYB4a transgenic tobacco plants had improved drought tolerance,which correlated to alterations in carbohydrate metabolism and an increase in proline content,as revealed by metabolic profiling and transcriptomic analysis.To mitigate the undesirable repressive side effects on plant traits,including dwarfism,shrunken leaves,and shorter roots of CsMYB4a transgenic plants,we deleted the C4 domain of CsMYB4a to obtain a CsMYB4a-DC4 variant and then overexpressed it in transgenic plants(CsMYB4a-DC4).These CsMYB4a-DC4 plants displayed a normal growth and had improved drought tolerance.Metabolite analysis demonstrated that the contents of carbohydrates and proline were increased in these transgenic plants.Our findings suggest that an approriate modification of TFs can generate novel crop traits,thus providing potential agricultural benefits and expanding its application to various crops.展开更多
Publisher Correction:aBIOTECH https://doi.org/10.1007/s42994-024-00149-5 The original article has been updated to correct two errors introduced during production:In this article Xiu Li the same as Mingzhuo Li and Guol...Publisher Correction:aBIOTECH https://doi.org/10.1007/s42994-024-00149-5 The original article has been updated to correct two errors introduced during production:In this article Xiu Li the same as Mingzhuo Li and Guoliang Ma should have been denoted as equally contributing authors.展开更多
Ti-32.5 Nb-6.8 Zr-2.7 Sn(TNZS,wt%) alloy was produced by using vacuum arc melting method,followed by solution treatment and cold rolling with the area reductions of 50% and 90%.The effects of cold rolling on the mic...Ti-32.5 Nb-6.8 Zr-2.7 Sn(TNZS,wt%) alloy was produced by using vacuum arc melting method,followed by solution treatment and cold rolling with the area reductions of 50% and 90%.The effects of cold rolling on the microstructure,texture evolution and mechanical properties of the experimental alloy were investigated by optical microscopy,X-ray diffraction,transmission electron microscopy and universal material testing machine.The results showed that the grains of the alloy were elongated along rolling direction and stress-induced α'' martensite was not detected in the deformed samples.The plastic deformation mechanisms of the alloy were related to {112} 111 type deformation twinning and dislocation slipping.Meanwhile,the transition from γ-fiber texture to α-fiber texture took place during cold rolling and a dominant {001} 110α-fiber texture was obtained after 90% cold deformation.With the increase of cold deformation degree,the strength increased owing to the increase of microstrain,dislocation density and grain refinement,and the elastic modulus decreased owing to the increase of dislocation density as well as an enhanced intensity of {001} 110α-fiber texture and a weakened intensity of {111} 112γ-fiber texture.The 90% cold rolled alloy exhibited a great potential to become a new candidate for biomedical applications,since it possesses low elastic modulus(47.1 GPa),moderate strength(883 MPa) and high elastic admissible strain(1.87%),which are superior than those of Ti-6 Al-4 V alloy.展开更多
MicroRNAs (miRNAs) play critical roles in the development and progression in various cancers. Dysfunctional miR-9 expression remains ambiguous, and no consensus on the metastatic progression of ovarian cancer has be...MicroRNAs (miRNAs) play critical roles in the development and progression in various cancers. Dysfunctional miR-9 expression remains ambiguous, and no consensus on the metastatic progression of ovarian cancer has been reached. In this study, results from the bioinformatics analysis show that the 3'-UTR of the E- cadherin mRNA was directly regulated by miR-9. Luciferase reporter assay results confirmed that miR-9 could directly target this 3'-UTR. miR-9 and E-cadherin expression in ovarian cancer tissue was quantified by qRT- PCR. Migration and invasion were detected by wound healing and Transwell system assay in SKOV3 and A2780. qRT-PCR and Western blot were performed to detect the epithelial-mesenchymal transition-associated mRNA and proteins. Immunofluorescence technique was used to analyze the expression and subcellular localization of E- cadherin, N-cadherin, and vimentin. The results showed that miR-9 was frequently upregulated in metastatic serous ovarian cancer tissue compared with paired primary ones. Upregulation of miR-9 could downregulate the expression of E-cadherin but upregulate the expression of mesenchymal markers (N-cadherin and vimentin). Overexpression of miR-9 could promote the cell migration and invasion in ovarian cancer, and these processes could be effectively inhibited via miR-9 inhibitor. Thus, our study demonstrates that miR-9 may promote ovarian cancer metastasis via targeting E-cadherin and a novel potential therapeutic approach to control metastasis of ovarian cancer.展开更多
Seawater electrolysis could address the water scarcity issue and realize the grid-scale production of carbon-neutral hydrogen,while facing the challenge of high energy consumption and chloride corrosion.Thermodynamica...Seawater electrolysis could address the water scarcity issue and realize the grid-scale production of carbon-neutral hydrogen,while facing the challenge of high energy consumption and chloride corrosion.Thermodynamically more favorable hydrazine oxidation reaction(HzOR)assisted water electrolysis is efficiency for energy-saving and chlorine-free hydrogen production.Herein,the MoNi alloys supported on MoO_(2) nanorods with enlarged hollow diameter on Ni foam(MoNi@NF)are synthesized,which is constructed by limiting the outward diffusion of Ni via annealing and thermal reduction of NiMoO_(4) nanorods.When coupling HzOR and hydrogen evolution reaction(HER)by employing MoNi@NF as both anode and cathode in two-electrode seawater system,a low cell voltage of 0.54 V is required to achieve 1,000 mA·cm^(−2) and with long-term durability for 100 h to keep above 100 mA·cm^(−2) and nearly 100%Faradaic efficiency.It can save 2.94 W·h to generate per liter H_(2) relative to alkaline seawater electrolysis with 37%lower energy equivalent input.展开更多
基金supported by the National Natural Science Foundation of China,Nos.82271397(to MG),82001293(to MG),82171355(to RX),81971295(to RX),and 81671189(to RX)。
文摘Microglial activation that occurs rapidly after closed head injury may play important and complex roles in neuroinflammation-associated neuronal damage and repair.We previously reported that induced neural stem cells can modulate the behavior of activated microglia via CXCL12/CXCR4 signaling,influencing their activation such that they can promote neurological recovery.However,the mechanism of CXCR4 upregulation in induced neural stem cells remains unclear.In this study,we found that nuclear factor-κB activation induced by closed head injury mouse serum in microglia promoted CXCL12 and tumor necrosis factor-αexpression but suppressed insulin-like growth factor-1 expression.However,recombinant complement receptor 2-conjugated Crry(CR2-Crry)reduced the effects of closed head injury mouse serum-induced nuclear factor-κB activation in microglia and the levels of activated microglia,CXCL12,and tumor necrosis factor-α.Additionally,we observed that,in response to stimulation(including stimulation by CXCL12 secreted by activated microglia),CXCR4 and Crry levels can be upregulated in induced neural stem cells via the interplay among CXCL12/CXCR4,Crry,and Akt signaling to modulate microglial activation.In agreement with these in vitro experimental results,we found that Akt activation enhanced the immunoregulatory effects of induced neural stem cell grafts on microglial activation,leading to the promotion of neurological recovery via insulin-like growth factor-1 secretion and the neuroprotective effects of induced neural stem cell grafts through CXCR4 and Crry upregulation in the injured cortices of closed head injury mice.Notably,these beneficial effects of Akt activation in induced neural stem cells were positively correlated with the therapeutic effects of induced neural stem cells on neuronal injury,cerebral edema,and neurological disorders post–closed head injury.In conclusion,our findings reveal that Akt activation may enhance the immunoregulatory effects of induced neural stem cells on microglial activation via upregulation of CXCR4 and Crry,thereby promoting induced neural stem cell–mediated improvement of neuronal injury,cerebral edema,and neurological disorders following closed head injury.
基金supported by the National Natural Science Foundation of China(U21A20232,32372756,and 32202551).
文摘In tea plants,the abundant flavonoid compounds are responsible for the health benefits for the human body and define the astringent flavor profile.While the downstream mechanisms of flavonoid biosynthesis have been extensively studied,the role of chalcone synthase(CHS)in this secondary metabolic process in tea plants remains less clear.In this study,we compared the evolutionary profile of the flavonoid metabolism pathway and discovered that gene duplication of CHS occurred in tea plants.We identified three CsCHS genes,along with a CsCHS-like gene,as potential candidates for further functional investigation.Unlike the CsCHS-like gene,the CsCHS genes effectively restored flavonoid production in Arabidopsis chs-mutants.Additionally,CsCHS transgenic tobacco plants exhibited higher flavonoid compound accumulation compared to their wild-type counterparts.Most notably,our examination of promoter and gene expression levels for the selected CHS genes revealed distinct responses to UV-B stress in tea plants.Our findings suggest that environmental factors such as UV-B exposure could have been the key drivers behind the gene duplication events in CHS.
基金supported by the National Natural Science Foundation of China(U1804233)the Innovation Scientists and Technicians Troop Construction Projects of Henan Province(202101510003)the Outstanding Youth Fund of the Natural Science Foundation of Henan Province(202300410119).
文摘Tree peony is a unique traditional f lower in China,with large,fragrant,and colorful f lowers.However,a relatively short and concentrated f lowering period limits the applications and production of tree peony.A genome-wide association study(GWAS)was conducted to accelerate molecular breeding for the improvement of f lowering phenology traits and ornamental phenotypes in tree peony.A diverse panel of 451 tree peony accessions was phenotyped for 23 f lowering phenology traits and 4 f loral agronomic traits over 3 years.Genotyping by sequencing(GBS)was used to obtain a large number of genome-wide single-nucleotide polymorphisms(SNPs)(107050)for the panel genotypes,and 1047 candidate genes were identified by association mapping.Eighty-two related genes were observed during at least 2 years for f lowering,and seven SNPs repeatedly identified for multiple f lowering phenology traits over multiple years were highly significantly associated with five genes known to regulate f lowering time.We validated the temporal expression profiles of these candidate genes and highlighted their possible roles in the regulation of f lower bud differentiation and f lowering time in tree peony.This study shows that GWAS based on GBS can be used to identify the genetic determinants of complex traits in tree peony.The results expand our understanding of f lowering time control in perennial woody plants.Identification of markers closely related to these f lowering phenology traits can be used in tree peony breeding programs for important agronomic traits.
基金by National Basic Research Program of China(2009CB119200)Anhui Provincial Natural Science Foundation(090413080)Natural Science Foundation of Anhui Education Bureau(KJ2009A110,KJ2008B211)
文摘Breeding strategies of Acrossocheilus fasciatus were studied from 592 specimens collected monthly during May 2007 and April 2008 in the Puxi Stream of the Huangshan Mountain. Sex ratio of the studied population was 0.90 : 1 ( ♀ : ♂ ), not significantly different from 1 : 1. Both sexes reached their first sexual maturity at age 2 (the second calendar year of their birth). Fifty percent of females and males reached maturity at a total length of 69.75 mm and 69.36 mm respectively, and the minimum total length was 61.54 mm and 58.96 mm, respectively. Based on the monthly changes in gonado-somatic index and egg- development process, the breeding season of the population was from May to August, with one obvious interval (in June) occurring in the breeding activity for the females. The nonsynchronous development of oocytes observed in mature ovaries indicated that A. fasciatus is a batch spawner. Absolute fecundity of A. fasciatus ranged from 308 to 2002 eggs with a mean of 857 eggs, increased significantly with total length, and was significantly different among three age groups. Relative fecundity ranged from 38.63 to 71.70 egg/g with a mean of 53.29 egg/g, and was not significantly different among the three age groups. It was suggested that these reproductive characteristics were adaptive strategies for A. fasciatus to acclimatize to lotic water where environmental factors were unstable but predictable [ Current Zoology 55 (5) : 350 - 356, 2009].
基金This work was supported by the National Science Foundation for Young Scholars of China.(Grant No.51401043).
文摘Conventional rolling experiments via the embedded pin in rolling sheet method were carried out at different reduction rates,starting rolling temperatures,and rolling speeds,and the effects of rolling parameters(i.e.,temperature,equivalent strain,and rolling time)on dynamically recrystallized(DRX)microstructures of AZ31 alloy during hot rolling were studied quantitatively.The temperature-strain dependence of the high-angle grain boundary fraction(HAGB%)was examined through electron backscattered diffraction.Results showed that as-rolled microstructures with high HAGB%may be obtained under average rolling temperatures of 270-320℃,equivalent strains higher than 0.8,and a rolling speed of 246 mm/s.These results may be related to the DRX kinetics and dynamic recovery which are controlled by deformation temperature and strain.HAGB%decreased with increasing rolling time(decreasing rolling speed),which is attributed to dynamic recovery,and the recrystallized grain size decreased as rolling time increased.However,further increases in rolling time increased average grain sizes but decreased mean subgrain sizes;these results are attributed to increases in the low-angle grain boundary(LAGB)length per unit area with rolling time.LAGB formation was controlled by dynamic recovery,which consistently follows polygonization or formation of new subgrains inside larger grains;hence,average subgrain sizes decreased with the rolling time.The effect of dynamic recovery on HAGB and LAGB formation and their related mechanisms over a wide range of strains and temperatures were discussed in detail.
基金supported by the Natural Science Foundation of China(Nos.U1804233,31370697)the Henan Province Science and Technology Innovation Outstanding Talent Fund(No.162400510013).
文摘Tree peony(Paeonia section Moutan DC.)seeds are an excellent source of beneficial natural compounds that promote health,and they contain high levels of alpha-linolenic acid(ALA).In recent years,tree peony has been emerging as an oil crop.Therefore,combined analysis of the transcriptome and proteome of tree peony(P.ostii)seeds at 25,32,39,53,67,81,88,95,and 109 days after pollination(DAP)was conducted to better understand the transcriptional and translational regulation of seed development and oil biosynthesis.A total of 38,482 unigenes and 2841 proteins were identified.A total of 26,912 differentially expressed genes(DEGs)and 592 differentially expressed proteins(DEPs)were clustered into three groups corresponding to the rapid growth,seed inclusion enrichment and conversion,and late dehydration and mature stages of seed development.Fifteen lipid metabolism pathways were identified at both the transcriptome and proteome levels.Pathway enrichment analysis revealed that a period of rapid fatty acid biosynthesis occurred at 53–88 DAP.Furthermore,211 genes and 35 proteins associated with the fatty acid metabolism pathway,63 genes and 11 proteins associated with the biosynthesis of unsaturated fatty acids(UFAs),and 115 genes and 24 proteins associated with ALA metabolism were identified.Phylogenetic analysis revealed that 16 putative fatty acid desaturase(FAD)-encoding genes clustered into four FAD groups,eight of which exhibited the highest expression at 53 DAP,suggesting that they play an important role in ALA accumulation.RT-qPCR analysis indicated that the temporal expression patterns of oil biosynthesis genes were largely similar to the RNA-seq results.The expression patterns of fatty acid metabolism-and seed development-related proteins determined by MRM were also highly consistent with the results obtained in the proteomic analysis.Correlation analysis indicated significant differences in the number and abundance of DEGs and DEPs but a high level of consistency in expression patterns and metabolic pathways.The results of the present study represent the first combined transcriptomic and proteomic analysis of tree peony seeds and provide insight into tree peony seed development and oil accumulation.
文摘Highly efficient and stable bifunctional electrocatalysts that can be used for large-current-density electrolysis of alkaline seawater are highly desirable for carbon-neutral economies,but their facile and controllable synthesis remains a challenge.Here,self-assembled ultralow Ru,Ni-doped Fe_(2)O_(3) with a lily shaped morphology was synthesized on iron foam(RuNi-Fe_(2)O_(3)/IF)via a facile one-step hydrothermal process,in which the intact lily shaped RuNi-Fe_(2)O_(3)/IF was obtained by adjusting the ratio of Ru/Ni.Benefitting from the Ru/Ni chemical substitution,the as-synthesized RuNi-Fe_(2)O_(3)/IF can act as free-standing dual-function electrodes that are applied to electrocatalysis for the hydrogen evolution(HER)and oxygen evolution reactions(OER)in 1.0 mol L^(-1) KOH,requiring an overpotential of 75.0 mV to drive 100 mA cm^(-2) for HER and 329.0 mV for OER.Moreover,the overall water splitting catalyzed by RuNi-Fe_(2)O_(3)/IF only demands ultralow cell voltages of 1.66 and 1.73 V to drive 100 mA cm^(-2) in 1.0 mol L^(-1) KOH and 1.0 mol L^(-1) KOH seawater electrolytes,respectively.The electrodes show remarkable long-term durability,maintaining current densities exceeding 100 mA cm^(-2) for more than 100 h and thus outperforming the two-electrode system composed of noble catalysts.This work provides an efficient,economical method to synthesize self-standing bifunctional electrodes for large-current-density alkaline seawater electrolysis,which is of significant importance for ecological protection and energy exploitation.
基金supported by National Natural Science Foundation of China(No.61871241,No.61771263)Science and Technology Program of Nantong(No.JC2018129,No.JC2018127)Fund of Nantong University-Nantong Joint Research Center for Intelligent Information Technology(No.KFKT2016A01,No.KFKT2017A05)。
文摘With the development of society and the progress of technology,more and more ocean activities are carried out.It results in booming of deep-sea diving.The use of helium-oxygen mixture(as a kind of breathing gas)solves the physiological problems of divers in saturated diving,but it brings about the Heliumspeech voice communication problem,the drop of speech intelligibility.There is no doubt that the effective speech communication must be provided for supporting the life and work of divers in deep-sea.This paper describes the mechanism of forming heliumspeech,discusses the effects of pressure and helium environment on the speech spectrum,compares the pros and cons of the time-domain and frequency-domain unscrambling techniques,shows the challenges in heliumspeech communications.Finally,it briefly introduces the deep learning,and points out that deep learning/machine learning may be a perfectly unscrambling technique.
基金National Natural Science Foundation of China(No.61871241)Nantong Science and Technology Project(JC2019114,JC2021129).
文摘This paper solves an energy-efficient optimization problem of a fixed-wing unmanned aerial vehicle(UAV) assisted full-duplex mobile relaying in maritime communication environments.Taking the speed and the acceleration of the UAV and the information-causality constraints into consideration,the energy-efficiency of the system under investigation is maximized by jointly optimizing the UAV’s trajectory and the individual transmit power levels of the source and the UAV relay nodes.The optimization problem is non-convex and thus cannot be solved directly.Therefore,it is decoupled into two subproblems.One sub-problem is for the transmit power control at the source and the UAV relay nodes,and the other aims at optimizing the UAV s flight trajectory.By using the Lagrangian dual and Dinkelbach methods,the two sub-problems are solved,leading to an iterative algorithm for the joint design of transmit power control and trajectory optimization.Computer simulations demonstrated that by conducting the proposed algorithm,the flight trajectory of the UAV and the individual transmit power levels of the nodes can be flexibly adjusted according to the system conditions,and the proposed algorithm can achieve signiflcantly higher energy efficiency as compared with the other benchmark schemes.
基金National Natural Sci-ence Foundation of China(Grant Nos.61871241 and 61771263)Science and Technology Program of Nantong(Grant No.JC2019117).
文摘Cognitive emergency communication net-works can meet the requirements of large capac-ity,high density and low delay in emergency com-munications.This paper analyzes the properties of emergency users in cognitive emergency communi-cation networks,designs a multi-objective optimiza-tion and proposes a novel multi-objective bacterial foraging optimization algorithm based on effective area(MOBFO-EA)to maximize the transmission rate while maximizing the lifecycle of the network.In the algorithm,the effective area is proposed to prevent the algorithm from falling into a local optimum,and the diversity and uniformity of the Pareto-optimal solu-tions distributed in the effective area are used to eval-uate the optimization algorithm.Then,the dynamic preservation is used to enhance the competitiveness of excellent individuals and the uniformity and diversity of the Pareto-optimal solutions in the effective area.Finally,the adaptive step size,adaptive moving direc-tion and inertial weight are used to shorten the search time of bacteria and accelerate the optimization con-vergence.The simulation results show that the pro-posed MOBFO-EA algorithm improves the efficiency of the Pareto-optimal solutions by approximately 55%compared with the MOPSO algorithm and by approx-imately 60%compared with the MOBFO algorithm and has the fastest and smoothest convergence.
基金supported by the National Key R&D Program of China(under grant number 2018YFD1000406)the National Natural Science Foundation(under grant number U1804233)the Central Plains Academics of Henan Province(under grant number 212101510003).
文摘Tree peony(Paeonia suffruticosa Andr.)is a unique aromatic plant famous for its huge flowers,bright colors and strong fragrance,having high ornamental,medicinal,and edible value.Research on tree peony's flower fragrance has mainly focused on the comparative analysis among its varieties,leaving the inheritance of aroma compounds in this plant an overlooked area of study.Here,the volatile components of flowers at three different flowering stages of the light fragrance-type cultivar P.ostii'Fengdan'and the strong fragrance-type cultivar P.suffruticosa'Chunguihuawu',as well as the half-opening stage flowers of 109 F_(1) progeny,were collected and characterized in-depth by dynamic headspace sampling technique combined with gas chromatography-mass spectrometry(GC-MS).Diverse profiles of volatiles that included alcohols,esters,aldehydes,terpenes,benzenes,and hydrocarbons were identified from the evaluated accessions.These results revealed that the volatile components and content of parents were significantly different,and that hybridization generated more complex volatile components.Most volatile compounds in the hybrids,especially the main aromatic components,existed in at least one of the parents,being characterized by intermediate or transgressive inheritance for the floral trait;this demonstrated that volatile compounds can be inherited from parents to progeny.Further,seven de novo aroma compounds—those present in progeny yet absent in their parents—were found in progeny.This study preliminarily clarified the segregation performance of aroma traits in tree peony hybrids,which might provide a theoretical basis for selecting breeding parents and the breeding of new varieties for aroma traits.
基金Natural Science Foundation of China(Grant No.32372756,No 32072621)the National Science Basic Research Program of Shanxi(2022JQ-194)for supporting this research.
文摘The MYB4 transcription factor family regulates plant traits.However,their overexpression often results in undesirable side effects like growth reduction.We have reported a green tea(Camellia sinensis)MYB4 transcription factor(CsMYB4)that represses the phenylpropanoid and shikimate pathways and stunts plant growth and development.In the current study,we observed that in CsMYB4a transgenic tobacco(Nicotiana tabacum)plants,primary metabolism was altered,including sugar and amino acid metabolism,which demonstrated a pleiotropic regulation by CsMYB4a.The CsMYB4a transgenic tobacco plants had improved drought tolerance,which correlated to alterations in carbohydrate metabolism and an increase in proline content,as revealed by metabolic profiling and transcriptomic analysis.To mitigate the undesirable repressive side effects on plant traits,including dwarfism,shrunken leaves,and shorter roots of CsMYB4a transgenic plants,we deleted the C4 domain of CsMYB4a to obtain a CsMYB4a-DC4 variant and then overexpressed it in transgenic plants(CsMYB4a-DC4).These CsMYB4a-DC4 plants displayed a normal growth and had improved drought tolerance.Metabolite analysis demonstrated that the contents of carbohydrates and proline were increased in these transgenic plants.Our findings suggest that an approriate modification of TFs can generate novel crop traits,thus providing potential agricultural benefits and expanding its application to various crops.
文摘Publisher Correction:aBIOTECH https://doi.org/10.1007/s42994-024-00149-5 The original article has been updated to correct two errors introduced during production:In this article Xiu Li the same as Mingzhuo Li and Guoliang Ma should have been denoted as equally contributing authors.
基金financially supported by the National Aerospace Science Foundation of China (Grant No.20133069014)
文摘Ti-32.5 Nb-6.8 Zr-2.7 Sn(TNZS,wt%) alloy was produced by using vacuum arc melting method,followed by solution treatment and cold rolling with the area reductions of 50% and 90%.The effects of cold rolling on the microstructure,texture evolution and mechanical properties of the experimental alloy were investigated by optical microscopy,X-ray diffraction,transmission electron microscopy and universal material testing machine.The results showed that the grains of the alloy were elongated along rolling direction and stress-induced α'' martensite was not detected in the deformed samples.The plastic deformation mechanisms of the alloy were related to {112} 111 type deformation twinning and dislocation slipping.Meanwhile,the transition from γ-fiber texture to α-fiber texture took place during cold rolling and a dominant {001} 110α-fiber texture was obtained after 90% cold deformation.With the increase of cold deformation degree,the strength increased owing to the increase of microstrain,dislocation density and grain refinement,and the elastic modulus decreased owing to the increase of dislocation density as well as an enhanced intensity of {001} 110α-fiber texture and a weakened intensity of {111} 112γ-fiber texture.The 90% cold rolled alloy exhibited a great potential to become a new candidate for biomedical applications,since it possesses low elastic modulus(47.1 GPa),moderate strength(883 MPa) and high elastic admissible strain(1.87%),which are superior than those of Ti-6 Al-4 V alloy.
文摘MicroRNAs (miRNAs) play critical roles in the development and progression in various cancers. Dysfunctional miR-9 expression remains ambiguous, and no consensus on the metastatic progression of ovarian cancer has been reached. In this study, results from the bioinformatics analysis show that the 3'-UTR of the E- cadherin mRNA was directly regulated by miR-9. Luciferase reporter assay results confirmed that miR-9 could directly target this 3'-UTR. miR-9 and E-cadherin expression in ovarian cancer tissue was quantified by qRT- PCR. Migration and invasion were detected by wound healing and Transwell system assay in SKOV3 and A2780. qRT-PCR and Western blot were performed to detect the epithelial-mesenchymal transition-associated mRNA and proteins. Immunofluorescence technique was used to analyze the expression and subcellular localization of E- cadherin, N-cadherin, and vimentin. The results showed that miR-9 was frequently upregulated in metastatic serous ovarian cancer tissue compared with paired primary ones. Upregulation of miR-9 could downregulate the expression of E-cadherin but upregulate the expression of mesenchymal markers (N-cadherin and vimentin). Overexpression of miR-9 could promote the cell migration and invasion in ovarian cancer, and these processes could be effectively inhibited via miR-9 inhibitor. Thus, our study demonstrates that miR-9 may promote ovarian cancer metastasis via targeting E-cadherin and a novel potential therapeutic approach to control metastasis of ovarian cancer.
基金supported by the National Natural Science Foundation of China(Nos.51772162 and 52072197)the Outstanding Youth Foundation of Shandong Province,China(No.ZR2019JQ14)+3 种基金the Youth Innovation and Technology Foundation of Shandong Higher Education Institutions,China(No.2019KJC004)the Major Scientific and Technological Innovation Project(No.2019JZZY020405)the Major Basic Research Program of Natural Science Foundation of Shandong Province(No.ZR2020ZD09)the Taishan Scholar Young Talent Program(No.tsqn201909114).
文摘Seawater electrolysis could address the water scarcity issue and realize the grid-scale production of carbon-neutral hydrogen,while facing the challenge of high energy consumption and chloride corrosion.Thermodynamically more favorable hydrazine oxidation reaction(HzOR)assisted water electrolysis is efficiency for energy-saving and chlorine-free hydrogen production.Herein,the MoNi alloys supported on MoO_(2) nanorods with enlarged hollow diameter on Ni foam(MoNi@NF)are synthesized,which is constructed by limiting the outward diffusion of Ni via annealing and thermal reduction of NiMoO_(4) nanorods.When coupling HzOR and hydrogen evolution reaction(HER)by employing MoNi@NF as both anode and cathode in two-electrode seawater system,a low cell voltage of 0.54 V is required to achieve 1,000 mA·cm^(−2) and with long-term durability for 100 h to keep above 100 mA·cm^(−2) and nearly 100%Faradaic efficiency.It can save 2.94 W·h to generate per liter H_(2) relative to alkaline seawater electrolysis with 37%lower energy equivalent input.